
I (N
A

S
A

-C
R

-1
2

0
5

9
8

) 
A

 
M
U
L
T
I
P
R
O
C
E
S
S
O
R
 
C
O
P
U
T
E
R
 

N
7
5
-1

6
2
5
0
,

S
I
M
U
L
A
T
I
O
N
 
M
O
D
E
L
 

E
M

PL
O

Y
IN

G
 
A
 
F
E
E
D
B
A
C
K

S
C
H
E
D
U
L
E
R
/
A
L
L
O
C
A
T
O
R
 
F
O
R
 
M
E
M
O
R
Y
 
S
P
A
C
E
 
A
N
D

B
A
N
D
W
I
D
T
H
 
M
A
T
C
H
I
N
G
 
A
N
D
 
T
M
R
 
P
R
O
C
E
S
S
I
N
G
 

U
n

c
la

s

m
 

(A
u

b
u

rn
 

U
n

iv
.)

 
42

1 
p 

C
 

$
1

0
.5

0
 

C
S
C
L
 
0
9
B
 
G
3
/
6
1
 

0
8
9
0
1

z

> 
L

r
m

C
m

-<

L
n

-I
-I

Z o 
m



/V75- /
A MULTIPROCESSOR COMPUTER SIMULATION MODEL

EMPLOYING A FEEDBACK SCHEDULER/ALLOCATOR

FOR MEMORY SPACE AND BANDWIDTH

MATCHING AND TMR PROCESSING

by

David B. Bradley and J. David Irwin

December 1974

Contract NAS8-26930
GEORGE C. MARSHALL.SPACE FLIGHT CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HUNTSVILLE, ALABAMA

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE PICES SUBJECT TO WN 'US Department of Commerce

Springfield, VA. 22151

SUBMITTED BY:

J. David Irwin

Associate Professor and Head
Electrical Engineering



NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.



FORWARD

This document is a technical summary of the progress made by the

Auburn University Electrical Engineering Department toward fulfillment

of contract NAS8-26930. This effort was coordinated with Dr. J. B. White,

National Aeronautics and Space Administration, Huntsville, Alabama.

ii



A MULTIPROCESSOR COMPUTER SIMULATION MODEL

EMPLOYING A FEEDBACK SCHEDULER/ALLOCATOR

FOR MEMORY SPACE AND BANDWIDTH

MATCHING AND TMR PROCESSING

David B. Bradley and J. David Irwin

ABSTRACT

A computer simulation model for a multiprocessor computer is devel-

oped that is useful for studying the problem of matching a multiprocessor's

memory space, memory bandwidth and numbers and speeds of processors with

aggregate job set characteristics. The model assumes an input work load

of a set of recurrent jobs. A minimal amount of knowledge of individual

job requirements for bandwidth is assumed. The model includes a feed-

back scheduler/allocator which attempts to improve system performance

through higher memory bandwidth utilization by matching individual job

requirements for space and bandwidth with space availability and esti-

mates of bandwidth availability at the times of memory allocation. This

matching factor is then fed back into the job scheduler via internal job

priority. A nonfeedback version is made available for comparison purposes

and an independent analysis is made to determine maximum improvements.

The simulation model includes provisions for specifying precedence

relations among the jobs in a job set. Provisions for specifying precedence

execution of TMR (Triple Modular Redundant and SIMPLEX (Non Redundant) jobs.

Some typical problems are studied by means of the simulator.

iii



The amount of slowdown of a multiprocessor due to memory access

conflict is determined by analytical means. A hardware processor to

memory interconnection and access conflict resolution scheme is developed

for a priority driven multiprocessor.

Documentation of the computer simulation model is included.

iy



ACKNOWLEDGEMENTS

The authors express their appreciation to the following three

persons for their excellent programming assistance in the preparation

of this document.

Mr. Henry C. Cobb, IV
Lieutenant Marvin M. Edgeworth, Jr., USAF
Airman Richard M. Lundy, USAF

V



TABLE OF CONTENTS

LIST OF FIGURES . ................. ........ viii

I. INTRODUCTION ................. . ...... . 1

II. A DESCRIPTION OF THE MODEL . ................ 16

III. THE MEMORY CONFLICT PROBLEM . ............. . . . 43

IV. LOCALIZED BANDWIDTH LIMITATION AND MISMATCH . ........ 58

V. THE PROCESSOR TO MEMORY INTERCONNECTION PROBLEM . ...... 81

VI. SOME PROBLEMS FOR THE SIMULATOR . .............. 117

VII. DISCUSSION AND CONCLUSION .................. 175

LIST OF REFERENCES ...... ............. ..... . 180

APPENDICES ................... ...... 183

A. Command and Data Structures, Program Descriptions and
Bandwidth Adjustment . ................ 183

B. Program Flow Charts . ................ 210

C. Program Listings . .................. 275

vi



LIST OF FIGURES

1-1 Multiprocessor hardware block diagram . . ..... . . . . ... 2

2-1 Simplified block diagram of simulation model ......... . 19

3-1 Slowdown due to memory contention without
bandwidth limiting ............. . . . . . ...... . 54

3-2 Bandwidth nonutilization. . . .............. . ... . 57

4-1 Slowdown due to memory contention and
bandwidth limitation . ........ . . ........ .. . 60

4-2 Distributions of bandwidth requirement, slowdown, and
bandwidth utilization for the three processor case from
multinomial distribution, BW(I) = (I-1)A/(.5NPROS *

(NPROS-1)) . .... 65

4-3 Frequency-gram for bandwidth requirement for NPROS = 3,
BW(I) = (I-I)A/(.5NPROS * (NPROS-1)) . .... ........ . 67

4-4 Frequency-gram for bandwidth requirement for NPROS = 10,
BW(I) = (I-I)A/(.5NPROS * (NPROS-1)) . ............ 67

4-5 Frequency-gram for bandwidth, requirement for NPROS = 16,
BW(I) =(I-1)A/(.5NPROS * (NPROS-1)). ....... ....... 68

4-6 Frequency-gram for slowdown and bandwidth utilization,
NPROS = 3, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)). . . 69

4-7 Frequency-gram for slowdown and bandwidth utilization,
NPROS = 3, A = 1.0, BW(I) = (I-1)A/.5NPROS * (NPROS-1)). . . . 70

4-8 Frequency-gram for slowdowhn and bandwidth utilization,
NPROS = 3, A = 1.25, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)). . . 71

4-9 Frequency-grams for slowdown and bandwidth utilization
NPROS = 10, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)) . 72

4-10 Frequency-grams for slowdown and bandwidth utilization
NPROS = 10, A = 1.0, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)). .. 73

4-11 Frequency-grams for slowdown and bandwidth utilization
NPROS = 10, A = 1.25, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)) . 74

vii



4-12 Frequency-grams for slowdown and bandwidth utilization,
NPROS = 16, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)). .. 75

4-13 Frequency-grams for slowdown and bandwidth utilization,
NPROS = 16, A = 1.0, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)) . . . 76

4-14 Frequency-grams for slowdown and bandwidth utilization,
NPROS = 16, A = 1.25, BW(I) = (I-1)A(.5NPROS * (NPROS-1)) . . . 77

4-15 Means and standard deviations for slowdown and
bandwidth utilization, A = 0.75 . ............... 78

4-16 Means and standard deviations for slowdown and
bandwidth utilization, A = 1.0 . ..... . ........ . . 79

4-17 Means and standard deviations for slowdown and
for bandwidth utilization, A = 1.25 . ............. 80

5-1 Logic structure of time multiplexed bus . ....... . .. . 82

5-2 Logic structure of full crossbar . .............. . 82

5-3 An equivalent circuit of the full crossbar. . .......... 84

5-4 Tabulation of access right word as a function of time for
priorities of 50, 100, 200 and 25 . .............. 87

5-5 Tabulation of access mechanism for all processor rankings
with four jobs of priorities 50, 100, 200, and 25 . ...... 89

5-6 Frequency-gram for length before lowest priority job
obtains first access for 2 processors . . ........... 93

5-7 Frequency-gram for length between ist and 2nd access by
lowest priority job, 2 processors . .............. 93

5-8 Frequency-gram for length before lowest priority job
obtains first access for 3 processors . ........... .. 94

5-9 Frequency-gram for length between ist and 2nd access
by lowest priority job, 3 processors . ............ 94

5-10 Frequency-gram for length before lowest priority job
obtains first access for 5 processors . ............ 95

5-11 Frequency-gram for length between Ist and 2nd access by
lowest priority job, 5 processors .... .......... . 95

5-12 Frequency-gram for length before lowest priority job
obtains first access for 10 processors . ........... 96

viii



5-13 Frequency-gram for length between Ist and 2nd access by lowest
priority job, 10 processors . ...... .. . . . . . . . . . 96

5-14 Frequency-gram for length before lowest priority job obtains
first access for 13 processors. ...... ... .. .... . . 97

5-15 Frequency-gram for length between 1st and 2nd access by lowest
priority job, 13 processors ....... . ......... . . 97

5-16 Frequency-gram for length before lowest priority job obtains
first access for 16 processors . . . . . . . . . . . . . . . . 98

5-17 Frequency-gram for length between Ist and 2nd access by lowest
priority job, 16 processors . ............... .. 98

5-18 Summary of means and standard deviations normalized about
[ Pi/PL] for priority driven access conflict resolution scheme. 101

5-18A Service to highest priority job relative to that of lowest
priority job under the priority criterion ...... . . . . . . 102

5-19 Block diagram of the multiprocess-or system with conflict
resolution scheme included . ....... ........ . . 103

5-20 Memory module address decoded . ....... . . ...... .... 105

5-21 Processor selector. .. ... ........ . .. .. ... . . . . 106

5-22 Processor ranking circuit . ...... . ........ . 108

5-23 Processor to memory gating (Read/write lines) ..... . . . . 109

5-24 Processor to memory gating (one bit of data lines). . . . . . . 110

5-25 Processor to memory gating (address lines). ... ........ 112

5-26 Alternate processor selector circuit. . ... . ...... ... 114

5-27 Alternate processor ranking circuit . ............. 115

5-28 As large as largest and exactly 1 out of N circuits . ..... 116

6-1 Tabulation of data concerning memory fragmentation - Job
space requirements from uniform distribution between 4 and
24 with mean = 2.17, varying total space. . ...... ..... . 124

6-2 A plot of data concerned with memory fragmentation - Constant
job space requirements, varying total space . ......... 125

ix



6-3 Tabulation of data concerning memory fragmentation for
four space requirement ranges, total memory size = 256,
40 jobs ................... . ... ..... . 126

6-4 A plot of data concerned with memory fragmentation - Varying
job space requirements, constant total space ......... 127

6-5 System configurations and job characteristics for comparisons
between feedback and nonfeedback scheduler/allocators . . . . 129

6-6 System resource utilization comparisons between feedback
and nonfeedback scheduler/allocators . ............. 130

6-7 System response as a function of total memory size - System
configurations and job characteristics. . ........... . 136

6-8 System response as a function of total memory size with
matched bandwidth requirements - CPU and IOP utilizations . . . 137

6-9 System response as a function of total memory size with
matched bandwidth requirements - Memory space and band-
width utilizations. . ...... .. , . ......... ... . 138

6-10 System response as a function of total memory size with
matched bandwidth requirements - Job completions. . ....... 139

6-11 System response as a function of total memory size with
matched bandwidth requirements - Late and early jobs. . ..... . 140

6-12 System response as a function of total memory size with
matched bandwidth requirements - Available space before
and after schedules . . . . . . . . . . . . . . . . . .. . .. 141

6-13 System response as a function of total memory size with
matched bandwidth requirements - Frequency of schedules .... 142

6-14 System response as a function of total memory size with
constant bandwidth requirements - CPU and IOP utilizations. .. 143

6-15 System response as a function of total memory size with
constant bandwidth requirements - Memory space and
bandwidth utilizations. ................... . .144

6-16 System response as a fun:tion of total memory size with
constant bandwidth requirements - Job completions . ...... 145

6-17 System response as a function of total memory size with
constant bandiwdth requirements - Available space before
and after schedules . . . . . . . . . . . . . . . . . . . . . . 146

x



6-18 System response as a fidnction of total memory size with
constant bandwidth requirements - Frequency of schedules . . 147

6-19 System response as a function of total memory size with
widely dispersed bandwidth requirements - CPU and IOP
utilizations .... ......... ...... ........ 148

6-20 System response as a function of total memory size with
widely dispersed bandwidth requirements - Memory space
and bandwidth utilizations. . . . ........... . . .... . . 149

6-21 System response as a function of total memory size with
widely dispersed bandwidth requirements - Job completions. . 150

6-22 System response as a function of total memory size with
widely dispersed bandwidth requirements - Late and
early jobs . . . . . . ... .... . . . . . ............ . 151

6-23 System response as a function of total memory size with
widely dispersed bandwidth requirements - Available space
and before and after schedules . . . . . . . . . ...... 152

6-24 System response as a function of total memory size with
widely dispersed bandwidth requirements - Number of
steps between schedules. .. ..... . . ........ 153

6-25 Relative comparisons of system response for various
system configurations and number of recurrent jobs - System
configurations and job characteristics 155

6-26 Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth
availability - Processor utilizations. .. . .. . . ...... 56

6-27 Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth
availability - Memory space and bandwidth utilizations . . . 157

6-28 Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth
availability - Memory space availability . ......... 158

6-29 Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth
availability - Job completions . . . . . . . . . . . . . . .159

6-30 Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth
availability - Number of steps between schedules . . . . . . 160

xi



6-31 Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Processor utilization . ....... 161

6-32 Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Memory space and bandwidth
utilizations . ................. . ... . . . . 162

6-33 Relative comparisosn of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Memory space availability . ..... 163

6-34 Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Job completions . .......... . 164

6-35 Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Simulation steps between schedules. . 165

6-36 The impact of TMR jobs on the memory allocation problem - Job
characteristics and system configurations . ......... 168

6-37 The impact of TMR jobs on the memory allocation problem -
processor utilizations . .................. . 169

6-38 The impact of TMR jobs on the memory allocation problem -
Memory space and bandwidth utilizations . .......... 170

6-39 The impact of TMR jobs on the memory allocation problem -
Number of simulation steps between schedules . ........ 171

6-40 The impact of TMR jobs on the memory allocation problem -
Number of jobs completed . .................. 172

6-41 The impact of TMR jobs on the memory allocation problem-
Available space immediately before and after schedules .... 173

6-42 The impact of TMR jobs on the memory allocation problem -
Relative numbers of completions for TMR jobs ......... 174

xii



B-I MAIN PROGRAM ................. .. .. ... . 211

B-2 ICARD subroutine .............. .... ... 214

B-3 BULK subroutine ................... ... 218

B-4 STAT subroutine . ...... ............ .. 221

B-5 SETUP subroutine ................... ... . 223

B-6 ENTER subroutine ................... ... 225

B-7 RECHEK subroutine ............ . . . ...... . 227

B-8 FEC subroutine ................... .... 231

B-9 CEC subroutine . ................. . .... 233

B-10 HLS subroutine . .......... .. .. ..... .... 237

B-11 NORPRB subroutine ... ................ .. . 243

B-12 LLK subroutine ................... .... 245

B-13 PEX subroutine ................. . ..... 253

B-14 NFMAL subroutine . . ................ .... . 257

B-15 MAPREF subroutine ................... .. 259

B-16 MEMRLS subroutine ................... .. 264

B-17 MASGN subroutine ................... .. . 268

B-18 OVFLMG subroutine ................... .. 270

xiii



I. INTRODUCTION

A multiprocessor computer system is a computer system in which

two or more hardware processing units simultaneously share a common

memory. A generalized block diagram of the hardware configuration

of a multiprocessor is shown in Fig. 1-1. Traditionally the hardware

cost of the computer memory has represented the lion's share of the

total hardware cost of the system. This high cost of the memory has

influenced the architecture of the general purpose computer system

more than any other single factor. One exemplification of this heavy

influence is the hierarchy of memory found in most members of past

and present generations of general purpose computer systems.

The desire to make full utilization of the relatively high cost

memory of a computer system foreshadowed the arrival of the multi-

processor system. Thus, it is not surprising that this variant of

computer architecture is almost as old as the concept of the stored

program computer itself [7], [8], [9], [10]. However, cost of the

computer system's memory was and is still not the only impetus for

studying the practical implications of such systems. The multiprocessor

system arises quite naturally in the realm of high reliability and

high availability systems. The multiprocessor system also provides

an ideal vehicle for outward expansion and for tailoring for specific

applications.

1



CPU
#1 N

i N

DEVI CES E lT

AND CPU E MEMORY
~L ~ I i L MODULE

IOP 1AUXILIARY # 2 R

STORAGE •

IOP
#I

Fig. 1-1 Multirocessor Hardware Block Diagram



3

Notwithstanding this considerable motivation for the develop-

ment of multiprocessor systems, there have in reality been a large

number of discussions in the relevant literature about various aspects

of multiprocessors but very few physical implementations, at least not

in view of the tremendous growth of electronic digital computer systems

during the past twenty years. This striking lack of prolification of

multiprocessor systems may be attributed in part to the fact that

technological improvements in speed, cost, and reliability of the

basic hardware components have kept pace with the vast majority of

application requirements and it is only from a handful of potential

applications such as space exploration, weather forecasting, airport

aircraft control and missile defense systems that requirements of

extreme reliability, availability and/or processing speed have exceeded

that obtainable from conventional computer configurations. The inherent

modularity of the system shown in Fig. 1-1 allows great flexibility

in expanding a given system to meet increased needs, in tailoring for

specific applications and in obtaining highly reliable systems. Another

advantageous feature of this configuration is that existing applications

software written for conventional uniprocessor computers may be run on

a machine of this configuration without alteration. -No intrinsic

penalty in overall system efficiency or system reliability is incurred by

this non-alteration. Thus the huge investment already made in high level

applications programming is not wasted when going from a conventional

uniprocessor system to a multiprocessor of the form shown in Fig. 1-1.



4

Difficulties with the Multiprocessor

The realization of the advantages offered by the multiprocessor

configuration is contingent upon overcoming, among other things,

certain operational difficulties associated with its configuration.

Very broadly, these difficulties revolve around recognition and effec-

tive exploitation of parallelisms in all phases of the computer opera-

tion.

One group of these problems is concerned with scheduling and

allocation of the system's resources to jobs in the system's input

queue. In accomplishing these tasks compromises must be made between

considerations of overall system efficiency and service to individual

jobs. In this regard, the system's supervisory programs tend to become

quite complex due to the large number of contingencies that may arise.

The interaction between the system's hardware processors arising

from their simultaneous use of the main memory's bandwidth is also of

central importance in the multiprocessor system. In a multiprocessor

system several hardware processors are simultaneously using the common

storage area and access contention problems arise. This tends to

negate potential speed increases that the multiprocessor configuration

offers. Thus the hardware interconnection between the memory and the

processors can become a considerable problem due to the required com-

plexity of the controlling mechanism and the speed at which interconnec-

tions must be made when several processors are simultaneously using

the memory.



5

The supervisory system programs and the space that they occupy

or hardware needed for their implementation represents overhead of the

system and tends to nullify some of the advantages promised by the

multiprocessor configuration. Thus only the simplest of algorithms

should be contemplated for these applications. Indeed, the speed

requirements of the processor to memory interconnection problem are

so severe that hardware implementation appears to be the only reason-

able approach.

Putpose of This Paper

It is the purpose of this paper to investigate some of the

problems associated with the multiprocessor such as job scheduling,

memory allocation, memory access conflict under both non-bandwidth

limiting and bandwidth limiting (i.e. localized bandwidth limiting

and mismatch) and the processor to memory module interconnection

problem. In view of the importance of the modular multiprocessor to

high reliability systems, problems concerned with use of a multipro-

cessor as a TMR processor will also be investigated. Some of these

problems are of a nature that analytical techniques are invalid due to

the gross simplifications required to make them manageable. These

simplifications cause the results to be of questionable value when

applied to practical situations of much broader scope than the analyt-

ical model. Thus, for some of these problems, a computer simulation

model is the primary instrument through which these investigations are

carried out. Actually the development of such a model consumes a



6

considerable portion of the paper. This development provides insight

into specific problem areas as well as an overview of how the inter-

actions of many of the specific problems affect the complete system.

The model then becomes more than an intermediary to some specific end.

For convenience, and due to the fact that it is believed that most

potential application areas for the modular multiprocessor lie in

this direction, the model assumes that the input job stream is like

that of a real time centralized process control computer or a central-

ized space borne computer, i.e., the input job stream consists of a

fixed set of recurrent jobs of either the periodic or aperiodic type.

Thus a minimal amount of knowledge concerning bandwidth requirements of

each job may be assumed.

Other Studies Related to the Topic of this Paper

The following topics are a small sample of those that have been

and are currently being discussed in the literature. Some of the papers

from which the topics were extracted had a considerable influence on

the direction taken in this paper. Others tend to point out alternative

approaches or place different emphasis on those areas of general agree-

ment and thereby help to put the present work in proper perspective.

The topics are subdivided into the following categories: Problem

areas common to parallel processing and parallel processors, high and

low level scheduling, task graphs, criterion for parallel processing,

parallelism recognition, and dynamic memory allocation.



Problem Area Survey

Lehman [22] has summarized a number of broad problem areas that

are common to parallel processing and parallel processors in general.

Both hardware and software problems were surveyed. The software

problems include requirements of high level .languages in the recogni-

tion, and/or provision for expression, of. the parallel structure of

computer programs at this level as well as the additional burdens

placed on the executive portion of the system in the areas of communica-

tion and interaction between the parallel segments of the program

ensuing from effective exploitation of the recognized or expressed

parallelisms. Hardware problems surveyed include the processor to

memory interconnection problem. The paper focuses on bringing to

light the vast potential that parallel processing systems have in

influencing the future development of the field of computing that is

a result primarily of their amenability to improvements in availability,

reliability, efficiency, expandability and performance to cost ratio.

The results of simulation in a multiprocessor environment of certain

applied mathematical problems were included. The paper has an extensive

bibliography that traces the inception and solution development of

many of the problem areas up to the point in time of the paper.

High and Low Level Scheduling

Lorin [15] has classified the scheduling function into two

major parts: High level scheduling and low level scheduling.

Operating systems that are high level dominated have traditionally



8

been called batch mode or service oriented. Those that are predom-

inantly low level are real time, time shared, or resource oriented.

The primary function of the high level scheduler is to act as

an interface between the operating system and its operational environ-

ment. It does this by selecting from the list of jobs that have entered

the system and are candidates for activation the next job(s) to be

passed to the active list. As each job enters the system a profile

of its major attributes such as priority, urgency, initiation time,

deadline and precedence relations are stored in a table. It is primar-

ily on the basis of these parameters that the selection is made. Other

inputs to the high level scheduler include initiation signals which

are triggered by a time clock or events such as new job arrivals, job

completions, I/O completions, release of key resources, and system

error. The output of the high level scheduler consists of a partially

ordered list in which are reflected the demands placed on the system

in absolute and relative time by the input job stream.

The function of the low level scheduler is to dynamically allocate

time resources to jobs in the active list. The low level scheduler

insures that jobs in the active list receive service at rates consistent

with assigned external priorities 'and that the available resources are

used in a semi-optimum fashion. In the performance of its function the

low level scheduler has a central problem; task switching. In general

task switching occurs when the current task in control of the CPU is

unable to continue due to a need for I/0 service or service from some

other asynchronous task. Another but somewhat more subtle difficulty



9

with which the low level scheduler must contend is the fact that there

are incompatabilities between resource balance and external priority.

A basic concept for resource allocation is to grant high priority

to I/O bound jobs so that channel and peripheral device utilization

is high and assign lower priority to CPU bound jobs so that the CPU

bound jobs tend to run during the interrupted times of the I/O bound

jobs. This concept is the thesis of multiprogramming. Even when

priority is used in a resource balancing scheme it is usually only

responsive to an average of the I/O or CPU boundedness of the job and

is not responsive to run to run variations or to the fluctuations

occurring during the course of a particular run.

Task Graphs

Schedules for jobs based on task or computation graphs for

execution by multiprocessors have been studied by Hu [16] and by

Ramamourthy, Chandy and Gonzalez [17], [18]. A task graph or compu-

tation graph is a partially specified directed graph whose nodes

denote some entity of processing to be done and whose arrows are used

to represent precedence relations among the entities. The processing

time and memory space requirement for each node may also be shown on

the graph. Schedules based on these graphs determine the sequence

in which to process the various tasks of the graph in order to complete

the graph in the minimum amount of time as well as the minimum number

of processors required, or given that n processors are available

a schedule is determined so that the graph is executed in the minimum



amount of time. Generally such schedules do not allow preempting of

tasks nor do they consider memory contention problems. Muntz and

Coffman [19] consider the two processor case in which preempting

is taken into consideration. Graham [20] and Manacher [21] have

studied an aspect of schedules based on task graphs known as Richards'

anomalies which were first noticed by P. Richards in 1960. Briefly,

Richards noticed that a slight decrease in the execution time of

certain tasks within a task graph could cause considerable increases

in the overall execution time of the task graph.

Criterion for Parallel Processing

Bernstein [23] has studied a method for determining whether two

segments of a program are executable in parallel by observing during

the execution of each segment how memory locations used by each segment

are treated. In this regard four cases were identified. The four

cases are as follows:

(1) The location is only fetched during execution of segment si.

(2) The location is only stored during execution of segment si.

(3) The first operation on this location is a fetch and subsequent
operations of segment si stores into this location.

(4) The first operation involving this location is a store and
subsequent operations of si fetches this location.

The parallel processability of the various segments of the program is

determined from logical unions and intersections of the above four

classes of memory locations for each program segment si.



Parallelism Recognition

Reigel [27] has studied parallelism in computing systems and

has identified six levels at which parallelisms capable of being

exploited occurs. The six levels identified are as follows:

(1) Between independent jobs

(2) Between groups of statements (tasks) within a job

(3) Between statements

(4) Within expressions

(5) At machine language instruction interpretation level

(6) At machine bit level

Parallelisms between independent jobs and between tasks within

a job are exploitable by multiprocessors having only a small number

of processing units as well as parallel processing systems having a

large number of processing units. A task graph may be used to provide

the parallel processing system with sufficient information for efficient

exploitation at the task level but some preprocessing is required to

obtain the task graph. Parallelisms between statements are more readily

exploitable by array processors. An example of this level of parallel-

ism is contained in the two statements x = A + C * D and y = B + C * D.

Another example is each statement in the range.of a DO loop. Parallel-

isms within expressions are readily exploited by pipe line processors.

For.example the expression A + B + C * D would require 2 add periods

and 1 multiply period on a serial processor but it may be accom-

plished in the time required for one add period plus the larger of an



12

add or a multiply period if an adder and a multiplier are simulta-

neously available. There is the possibility of exploiting parallel-

isms at the machine instruction interpretation level on any type

processor since all the phases of instruction fetch, decoding and

execution are not strictly sequential, especially with microprogrammed

processors. Parallelism at the machine bit level is also exploitable

with any type processor and was probably the first to be utilized.

These parallelisms include widths of data paths and registers in the

machine. All these levels of parallelisms are explored in considerable

detail by Lorin [15].

Dynamic Memory Allocation

Randell and Kuehner [24] have associated four aspects of dynamic

memory allocation that, in some manner, are descriptive of the capa-

bilities and fundamentals of present hardware oriented dynamic allo-

cators with the concepts of name space, predictive information,

artificial contiguity, and uniformity of units of storage allocation.

Name space refers to a set of names that a program can use to

refer to items of information. The simplest name space consists of

the set of integers 0, 1, 2, ...., n used as absolute addresses in

the main memory. The name space can also be divided into a number

of segments with each segment composed of a linear name space. There

is no implied ordering of the segment names although this may be done

in which case the segment name space is said to be linearly segmented.

If there is no ordering among the segment names the segment name space



13

is said to be symbolically segmented. The sizes of the various

segments need not be the same nor does the size of a particular

segment necessarily remain constant during the execution period of

some program having space in the segment. Thus the segmented name

space differs from the generalized notion of a two-dimensional matrix,

although it is sometimes referred to as a two-dimensional name space.

The major disadvantage of the segmented name space is the complexity

of actually addressing the physical storage linearly. Its major

advantages are its added utility and convenience in dynamically

allocating storage, movement of information between levels of storage,

protection and sharing among programs, error detection in addressing,

and in relieving the programmer of the responsibility of name assign-

ment.

Predictive information refers to methods for predicting the

probable use of storage over a relatively short period of time in the

near future. These predictions may be explicitly incorporated by the

programmer, discovered by a compiler, or made by observations by the

system of previous utilizations. This information may be used to

determine when to bring new blocks of storage into main memory and

which blocks already in the main memory have the lowest probability of

being referred to in the near future and thus may be replaced.

Artificial contiguity refers to the concept of mapping a contig-

uous name space into a non-contiguous address space. This is accom-

plished by providing an automatic mapping mechanism between points in



14

programs at which names are referred to and the system's hardware

for accessing a corresponding absolute address. The mapping scheme

is invisible to the program that refers to the name. The most frequent

use for such schemes is to-disguise or artificially extend the apparent

size of the system's physical main memory space. Systems employing

this technique are often referred to as virtual storage systems. The

major disadvantages of the use of a mapping scheme for provision of

artificial contiguity are its cost and reduction of addressing speed.

A dynamic memory allocation scheme may allocate space in fixed

size blocks (a single size or several sizes) or an attempt may be

made to make the size of allocation just equal to the size needed by

the information. In the latter case the memory space tends to become

fragmented into many small pieces with an attendant high overhead for

linking them together or a lot of shuffling of blocks of information

so as to consolidate the small blocks back into larger more useful

blocks. If this linking or relocating of blocks of information is not

done then the net result may be that a portion of main memory may be

unusable for a certain percentage of time. The extent of this unus-

ability depends, to a considerable degree, on the ratio of the average

block size to that of the total memory size. The technique of

dynamically allocating memory only in fixed size blocks is exemplified

by paging systems in which the program usable portion of main memory is

broken up into page frames all of the same size. Hardware then auto-



15

matically performs placement of pages as they are referenced by the

program during execution. This form of dynamic memory allocation has

been discussed by Denning [25]. Various replacement algorithms have

been studied by several people including Belady [26]. In such systems

the actual placement of blocks is made trivial once the replacement

algorithm has decided which page to push out if this is necessary.

The actual fragmentation of memory does not occur with paging systems,

but the effect of fragmentation (i.e. time-space product waste) does

occur since a given program may be occupying many pages in memory while

waiting on the transfer of a page following a page fault. Fragmentation

can also occur within pages since many page frames may be only partially

used.



II. A DESCRIPTION OF THE MODEL

Cursory Discussion

The computer program of the model generates, schedules, allocates

memory to, assigns processors to, and executes sets of jobs whose

parameters are controlled by data and commands from the input stream.

It also prints out statistics concerning service to individual jobs

and utilization of all system resources. The execution proceeds in

a discrete manner with some assumed number of basic clock periods per

simulation step. This number is a variable of the system.

Two types of memory allocators are used. One is a so called

'optimum-fit' algorithm [11] in which memory allocations are made on the

basis of the number of available blocks and the requirements of the

job. The second allocator is an adaptation of the 'best-fit' algorithm

[12] but also utilizes information concerning the bandwidth of the

available blocks of memory. The goodness of fit in bandwidth and space

is fed back into the job scheduler for determination of priority with

this second method.

Under both types of memory allocators an allocation is assumed

to be in one contiguous block. Allocations for TMR jobs are made in

triplicate from three sets of disjoint memory modules. Although the

memory consists of M modules all of the same size and speed, it is

viewed as one contiguous block in so far as the allocation routines are

concerned.

16



17

The system utilizes a form of community multiprogramming in

which both TMR as well as SIMPLEX jobs may be in progress simultaneously.

The entire system is priority driven. A schedule in this system does

not consist of an explicit assignment of resources for predetermined

time intervals to particular jobs, but rather, consists of the more

flexible priority ordering of jobs based on terms concerned with exter-

nal priority, amount of time spent in the job queue, nearness to some

target time, and memory preference. Interrupts for I/O operations

are included in the model. Job execution proceeds in essentially

two phases as follows:

Phase 1--A number of memory access requests is generated for

each active job from a normal distribution with mean and standard

deviation determined by the speed of the processor and some

assumed average number of processor cycle periods per memory

access which is based on the particular characteristics of the

job.

Phase 2--Some portion of the number of memory accesses requested

by each job is granted to each job. This portion is based on

the number available from the job's memory space, the priority

of the job relative to that of any other active jobs having

space in the same modules and the number of memory accesses

actually requested by the job.

A job is considered to be active at a particular simulation step if it

has been scheduled and has all the resources that it needs for processing



18

at that particular step. Scheduling is done in small batches and is

triggered by comparing short term system utilization averages with

long term utilization averages as well as considerations of instan-

taneous system and job queue status. The input job stream is assumed

to be like that of a centralized process control computer or a central-

ized space borne computer, i.e. the jobs consist of a fixed set (fixed

for the duration of a particular run) of which some are executed on

a periodic basis while others are executed aperiodically. The system

has provisions for handling precedence relations among the jobs in the

input job set. An estimate of the bandwidth requirements for each job

is assumed to be available for use with the feedback scheduler/allo-

cator.

Block Diagram Description

A simplified block diagram of the model is shown in Fig. 2-1.

The main program accepts commands and data from the input stream. At

the start of a sequence of simulation runs it invokes a set of routines

labeled Job Generator which generates a set of jobs with characteristics

specified by the data from the input stream and places these jobs into

a bulk storage table. Upon command from the input stream a specified

selection of these jobs is loaded into the job status and control table.

The main program then calls the High Level Scheduler which performs

a limited amount of pre-processing on the set of jobs in the job status

and control table. The High Level Scheduler then calls either the

Future Events Chain Manager or the Current Events Chain Manager for



19

JOB FUTURE

JOB STATUS EVENTS
GENERATOR AND - CHAIN

CONTROL MANAGER
TABLE

HIGH CURRENT

MAIN LEVEL EVENTS

PROGRAM SCHEDULER CHAIN -

MANAGER

LOW
LEVEL MEMORY PROGRAM
SCHEDULER ALLOCATOR EXECUTER

INPUT COMMANDS AND DATA

OUTPUT STATISTICS

Fig. 2-1 Simplified Block Diagram of Simulation Model



20

placement of those jobs for which a target time could be set up during

the initial pre-processing into either the Future Events Chain or the

Current Events Array depending on the nearness of this target time to

the present time. Control is then returned to the Main Program. If

the non-feedback scheduler/allocator is specified in the input data

then the Main Program calls the Current Events Chain Manager for

chaining the jobs in the Current Events Array together according to

their internal priority. Control is then returned to the Main Program

where upon the Memory Allocator is called for allocation of main memory

space to as many of the jobs in the Current Events Chain as is possible.

Control is then returned to the Main Program. If the feedback

scheduler/allocator is specified then the main program first calls the

Memory Allocator for reserving space for as many of the jobs in the

Current Events Array as possible. It then calls the Current Events Chain

Manager for chaining together all the jobs in the Current Events Array

according to their internal priority. In this manner the goodness of

fit in both space and bandwidth influences the internal priorities of

the jobs in the Current Events Array which are allocated memory.

Control is then returned to the Main Program. In either of the above

cases after memory has been allocated to as many of the jobs in the

Current Events Array as possible and the jobs have been chained together

according to priority the main program calls the High Level Scheduler

for an initial assignment of Processors. After this initial assignment

of processors the Program Executer is called for one step of execution

processing for all active jobs.



21

The Program Executer performs an execution processing step by

generating a number of memory access requests for each active job

and then granting some portion of this number of requests to each of

the active jobs. After granting memory accesses the Program Executer

updates the completion counters for each of the active jobs and checks

for I/O interrupts and processing completions. If an I/O interrupt

point has been reached or a job has completed the Program Executer

calls the LowLevel Scheduler for reassignment of processors. Before

returning to the Main Program the Program Executer updates data arrays

containing information concerning the utilization of system resources

for the present step of execution processing and service to individual

active jobs. After returning to the Main Program following a step of

execution processing the Main Program checks to see whether a new

schedule should be initiated or whether or not the present run has

been completed. If neither of these events is to occur or has happened

then 'the simulation clock is advanced by one and the Future Events

Chain Manager is called to remove any jobs from the Future Events Chain

whose next event time has been reached. If a new schedule is to be

initiated then the Memory Allocator and Current Events Chain Manager

are called to perform the necessary processing. Processing continues

in this manner with control alternating between the Main Program and

Program Executer until the run has been completed or until no active

jobs are in the Current Events Chain. In case the run is not completed

but no active jobs are in the Current Events Chain the simulation clock



22

is advanced to the time of the leading event in the Future Events Chain

provided such an event exists.

In case there is no such event in the Future Events Chain the

simulation run is abnormally terminated and no further runs can be

initiated. In case a simulation run completes normally the statistics

for the run are printed and another run may then be initiated by a

command from the input stream.

Let us now consider some of the topics that were mentioned or

implied above in more detail.

Granularity of Simulation Time

Each step of simulation corresponds to a large number of CPU

cycle periods or alternately a smaller number of memory module cycle

periods. This allows a simulation run to proceed in a reasonable amount

of real time. However, there are bounds on the amount of granularity

that can be tolerated if meaningful results are to be obtained.

Specifically, peak demands on memory access requests tend to become

filtered by averaging during each simulation step. Thus very little

slow down of the overall system due to memory access conflict that

would arise in a real situation due to two or more processors simul-

taneously executing programs from a common memory shows up in the

simulation. Also, bandwidth utilization tends to be higher with the

simulator than it would be with a real system due to this same cause.

If I/O interrupts are frequent in each job or if the average number of

simulation steps per job is small then there tends to be proportionally



23

large amounts of wasted simulation time because the step in which the

interrupt or completion occurs is on the average only half used by the

job for which the event occurs. The memory bandwidth that the inter-

rupted or completing job would have claim to can be redistributed to

any other active jobs having space in the same modules but processors

are not reassigned, at least not for further processing, until the end

of the simulation step. Thus processors assigned to interrupting or

completing jobs are actually only partially used during the step in

which the interrupt or completion occurs.

From the above discussion we may conclude that there are necessary

constraints on the relationships between the granularity of simulation

time, mean processing speed of jobs, frequency of interrupts and average

total number of memory accesses required per job for completion. On the

one hand the number of memory module cycle periods per simulation

step should be small in order to more closely approximate a real

system but on the other hand it should be large in order to keep the

amount of real processing time within reasonable bounds. Thus the number

of basic clock periods per simulation step is made a parameter of the

system.

The Internal Priority Equation

The scheduling and allocation of system resources to individual

jobs is priority oriented. Priority provides a convenient, compact, and

versatile vehicle for driving the system. It may be used to express

both the absolute and relative demands placed on the system by the



24

input job stream. The priority equation used by the model has the

following form:

INP = MIN(MAXPR, W1 *EXP + W2 *NDLN + W3*IWAIT + W4*MAPF)

where INP represents internal priority, MAXPR is the maximum priority

allowed, EXP is an externally declared priority, NDLN is a measure of

nearness to some target time or deadline, IWAIT represents the amount

of time that the job has spent in the ready queue and MAPF is a

measure of how close the requirements of the job for space and band-

width match that available from the block from which its main memory

space was obtained. The variables W1 , W2, W3 and W4 are weighting

factors for their associated terms. The exact meanings of the terms

NDLN, IWAIT and MAPF are as follows:

(vNDLN AX0VIpresent time - target timel)

NL estimated minimum processing time

if 0 < V2 1MAX (0, V2 * (1 + X) if O V2

V2 * X if V2 > 1 and X < 1
IWAIT =

V2 * (1 + .5X) if V2 > 1 and x > 1

time in ready queue
where X = * min processing time



25

0 if IFBK = 0

MAPF = Max over DSM * MMSPF previously
available + selected
blocks at MMAPF * DUM if DUMIe blocks at
time of or MMAPF/DUM if DUM>l present
schedule schedule

if IFBK = 1

where DSM MMS
BLK SIZE

estimated available bandwidth of

DUM =space in block occupied by job
estimated mean bandwidth required by job

MMS = Main memory space required,
MMSPF = Memory space preference factor
MMAPF = Memory access preference factor
V1 , V2 and IFBK are all variables of the system

From the priority equation we may observe that the scheduler

utilizing this equation as its activating mechanism may be made to

take on many forms. For example, if W1, W2, and W4 are small and W3

is large with V2 > 1 the scheduler tends to operate according to the

first in first out discipline. If 0 < V2 < 1 then it works like a last-

in first-out scheduler. If W1, W3, and W4 are small but W2 is large

then the scheduler is similar to a deadline scheduler, etc.

I/O Interrupt Mechanism

The I/O interrupt mechanism is facilitated by assigning one of

a limited number of normalized processing curves to each job at the

time of job generation. There are no specific requirements for these



26

curves but they should loosely approximately the manner in which

computer programs tend to operate in regard to the points in the

program at which the I/O processing occurs and the duration of these

interrupts. Many computer programs initially read a number of

variables and arrays into the main memory, perform some operations on

these variables and arrays, and finally output some data. Although

no figures are available, it is believed that the initial read operations

usually involve a larger number of operations. Thus most of the

processing curves used by the model assumes on the order of two to four

times as much I/O processing near the beginning of the curve as near

the end. The program which calculates the expected minimum processing

time for each job during the initial preprocessing phase immediately

before a simulation run assumes that the number of main-memory accesses

between interrupts is from a normal distribution for both CPU and IOP

processing. Therefore, closer estimates of the minimum processing time

can be expected if these numbers of accesses are actually from a normal

distribution.

The manner in which these curves are actually used to obtain

the I/O interrupts is as follows: In the job status table for each

job is a completion count word and a next interrupt point word. The

contents of the next interrupt point word are updated with the number of

memory accesses required before the next interrupt at the beginning of

program execution and immediately after each interrupt. This is done by

multiplying the total number of CPU memory accesses or IOP memory



27

accesses, as the case may be, for the job under consideration by the

abscissa points of the normalized processing curve at which interrupts

occur. The smallest such product that is greater than the old next

interrupt point is the new next interrupt point. The Program Executer

then compares the completion count with the current next interrupt point

word after each step of program execution in order to determine when the

interrupt point has been reached.

Job Switching

Multiprogramming is a technique for improving system efficiency

in which two or more jobs are concurrently executed, i.e., second job,

third job, etc., is started before the first job completes. Thus,

when a job interrupts for I/O processing the CPU may be reassigned to

some other job, thereby avoiding waste of CPU time. The major purpose

of the Low Level Scheduler is to manage the system's processor time

resources. It does this by job switching in a multiprogramming

environment. In conjunction with job switching is a preempting scheme

in which jobs wanting a CPU may preempt lower priority jobs that have a

CPU. Due to the assumed nature of the bulk storage medium that the

lOP's operate with no preempting of IPOs is allowed. The option is also

available whereby jobs interrupting for I/O processing may voluntarily

return their CPU(s) to an available pool or retain the CPU(s) during

the I/0 processing depending on their priority and the number of jobs

in the job queue. The allowed preempting is as follows:

1. A TMR job may preempt the lowest priority TMR job among

the three lowest priority jobs of lower priority.



28

2. A TMR job may preempt the three lowest priority SIMPLEX jobs

of lower priority provided no lower priority TMR job is among

the three lowest priority jobs.

3. A SIMPLEX job may preempt the lowest priority SIMPLEX job

of lower priority.

4. A SIMPLEX job may preempt the lowest priority TMR job of lower

priority provided there is no lower priority SIMPLEX job.

Upon voluntarily giving up CPU(s) at I/O interrupt initiation the

Low Level Scheduler looks for other jobs for reassignment of CPU(s) to.

The following scheme is in effect.

Case 1. The interrupting job is TMR.

All three of the interrupting job's CPUs are assigned to the

highest priority TMR job among the three highest priority jobs

that want CPUs provided such a TMR job exists, otherwise as

many of the CPUs as possible are assigned to the highest

priority SIMPLEX jobs that want a CPU. Any remaining unassigned

CPUs are placed in an idle state.

Case 2. The interrupting job is SIMPLEX.

1. The highest priority job that wants a CPU is SIMPLEX.

The interrupting job is assigned to the highest priority

job that wants a CPU.

2. The highest priority job that wants a CPU is TMR.

The interrupting job's CPU is assigned to this TMR job

provided there are two other idle CPUs that may also be



29

assigned to this TMR job or there is one idle CPU and at

least one simplex job of lower priority that may be

preempted of its CPU. If there is no idle CPU then two

lower priority SIMPLEX jobs that may be preempted of their

CPUs will suffice, otherwise, the interrupting job's CPU

is assigned to the highest priority SIMPLEX job that

wants a CPU if one exists. If all the above tests fail

then the CPU is placed in an idle state.

A similar scheme is used upon completion of I/0 processing in

which IOPs are to be reassigned except that, as already mentioned, no

preempting of IOPs is allowed.

Methods for Triggering New Schedules

The frequency of and points in time at which new schedules are

initiated is of great importance in regard to system efficiency as well

as service to individual jobs. If new schedules are too frequent then

the amount of overhead attributed to schedule processing can become a

considerable portion of total system processing. Conversely, if new

schedules are too sparse or do not occur at the correct points in time

then system thruput decreases. The model attempts to detect when a new

schedule should be initiated by comparing short term running average

CPU, IOP, and memory bandwidth utilizations with long term averages

in conjunction with instantaneous conditions of job queue status and

memory space availability. In order to facilitate a better understanding



30

of this let us make a few definitions.

Definition: Processor step utilization (PSU)

PSU 1 NACT NMAG(i)
NPROS NMAR(i)

where NPROS is the total number of processors, NACT is the number of

active processors, NMAG(i) is the number of memory accesses

granted to the ith active processor and NMAR(i) is the number of

memory accesses requested by the ith active processor.

Definition: Bandwidth Step Utilization (BWSU)

BWSU - NMAG
NMAA

where NMAG = number of memory accesses granted

and NMAA = number of memory accesses available.

The short term running average utilizations are obtained as

follows:

RPUI = RPUI-1 * NSTEP-1 + PSU/NSTEP
NSTEP

* NSTEP-1RBU = RBUI NSTEP + BWSU/NSTEPI I-1  NSTEP,

where RPU I and RBUI are running processor and bandwidth utilizations

at step I and NSTEP is a variable of the system which essentially

adjusts the number of previous steps over which the average is taken.

This is not the same type of running average that is used in statis-



31

tical work but it serves the purpose here -of smoothing step fluctu-

ations and requires storage of only the current estimate. Thus the

new schedule equation may be of:the form

NEW SCHED = TSLS - [AVMS - NJMT + (STCU + STCU " NICU)

*(STIU + STIU , NICU) • (SCWM +

SCWM * (WMNS + WMNS • NWMNS))] 2.2

where all the variables are Boolean variables and have the following

meanings.

1 if the time since last schedule > N
TSLS =

0 otherwise

1 if the amount of available space
AVMS = is > one-half the total memory space

0 otherwise

1 if the number of jobs waiting
memory is > 1/2 the number of scheduled jobs

NJMT =
0 otherwise

1 if short term CPU utilization
is < TH1 * long term CPU utilization

STCU =
0 otherwise

1 if the number of idle CPUs is
> 1/2 the number of CPUs

NICU =
0 otherwise



32

1 if short term IOP utilization
is < TH1 * long term IOP utilization

STIU =
0 otherwise

1 if the number of idle IOPs is
> 1/2 the number of IOPs

NIOU =
0 otherwise

1 if the number of jobs that are
scheduled and waiting memory is

SCWM = > 0 and the amount of free space
is > 1/4 the total space

0 otherwise

1 if the number of jobs waiting memory but
not scheduled is > 0 and at least 1/4 of

WMNS = the total memory space is available

0 otherwise

1 if there are any jobs in the job queue
that are not waiting memory and have not

NWMNS = been scheduled

0 otherwise

and N and TH1 are system parameters.

Memory Allocation Schemes

'Best fit' and 'first fit' memory allocation methods are described

by Knuth [12]. Briefly each algorithm assumes that information con-

cerning the available blocks is maintained in a list that is linked

according to starting addresses in main memory. In the first-fit

scheme when an allocation of size X is to be made a sequential search



33

of the list is made beginning at the top of the list until the first

block of size > X is found. An allocation of size X is then made from

this block and any remaining portion of the block is left in the avail-

able list, otherwise, the list is relinked around this block. The

best fit method assumes that the entire list is searched and the

location in the list of the best fitting block of size greater than or

equal to X is retained. If such a block exists then an allocation is

made from this block. An 'Optimum Fit' strategy is described by

Campbell [11]. This method assumes that in addition to the available

list the number N of available blocks is also maintained. Before an

allocation is made an integer F(N) is calculated where F(N) < N. The

linked list is then searched through the first F(N) - 1 entries and

the location of the best fitting block is retained. The search is

then continued and the first block that is a better fit than any of the

preceeding blocks is selected.

There are several measures of the effectiveness of the memory

allocation scheme. One such measure is its ability to make an alloca-

tion in one contiguous block at any time. Under such a measure the

scheme which tends to keep most of the available space in a single

contiguous block tends to have as good (if not better) chance for

making a large allocation at any time as any other scheme. Simulation

seems to indicate that under this measure there are only marginal

differences between the first-fit, best-fit and optimum-fit algorithms.



34

Other measures take into consideration the amount of time that

is required to implement the algorithm. The algorithms would defi-

nitely be ranked first-fit, optimum-fit and best-fit if the only con-

sideration were that of minimum time for implementation. However,

even here, whether or not this difference is significant in a practical

sense depends on the actual average number of available blocks of

storage. In this regard, it is noted in passing that there appears to

be some negative correlation between the ratio of average request size

to total memory size and the average number of available contiguous

blocks of storage.

The simulation model uses two types of memory allocation schemes.

The first method utilizes the optimum-fit algorithm in a non-feedback

scheduler/allocator. The second method uses an adaptation of the

best-fit algorithm in a feedback scheduler/allocator. In this second

allocation method some loose optimization in bandwidth matching is

attempted by associating some estimated bandwidth requirement for the

jobs to which memory is to be allocated with an estimate of bandwidth

availability from the available blocks of memory at allocation time.

As already noted during the discussion of the internal priority equation

this goodness of fit in bandwidth as well as space also influences

the schedulers via the internal priority of each job. For this reason

this method of scheduling and memory allocation is called a feedback

scheduler/allocator.



35

Mechanics of the Optimum-Fit Algorithm

Let N = number of available memory blocks.

Let MAVL be the list of available memory that are linked according

to starting address in main memory.

Upon memory request, calculate an integer, F(N), defined by

1 1 1 11 1
F(N) F(N) + 1 N - 1 F(N) - 1 F(N) N-l

N N 1
or for N > 9, - < F(N)< - + 2 -

where E = 2.718.

Then search the linked list, MAVL, and select the first block after the

F(N) - Ith block that is a better fit than any of the previous blocks.

If no better fitting block is found after block F(N) - 1 then select

the best fitting block among the first F(N) - 1 blocks, provided one

was found in this group.

The rationale behind the optimum-fit strategy is explained in

[11]. It should suffice here to say that the method assumes that the

block sizes are uniformly distributed along the linked list and that

there are on the average a number of choices from which an allocation

could be made. If these statistical properties do in fact hold, the

method stands a good chance of actually selecting a block that is close

to the best fit as well as reducing the search time below that required

by the best fit algorithm, especially if there is a large number of

blocks in the list. It is shown in [11] that the probability of

actually choosing the best fitting block approaches 1/2.718 with

large N.



36

Mechanics of the Best Fit Algorithm with Feedback

Let MAVL be the list of available blocks linked according to

starting addresses. Let NAML be a list of jobs waiting memory.

1) Search over all blocks in MAVL and all jobs in NAML for best

combined fit in space and bandwidth.

2) Make an allocation to the job from the block for which the

space and bandwidth available from the block most closely

approximates that required by the job.

3) Repeat steps 1) and 2) until either all memory space has

been assigned, all job requirements have been satisfied, or

no more assignments are possible.

In each of the above schemes used by the model it is assumed that

a small batch of jobs are to be allocated memory at the same time. Any

unused portion of a block from which an allocation is made remains in

the list as an available block. Also, when making second and third

allocations to a TMR job these additional allocations must be made

from disjoint sets of memory modules. Actually no allocation is made

to a TMR job until it has been determined that three allocations can

be made from three disjoint sets of modules.

Estimation of Bandwidth of Available Space

In order for the feedback scheduler/allocator to work an estimate

of the bandwidth available from each memory module is required. This

is obtained by means of counters which count the number of accesses made

to each memory module over some period of time. In order for the simu-



37

lator to obtain the required estimates three one dimensional arrays

are required as follows:

MAS(*)--module space registers

IBWCTR(*)--elapsed time counters

NAA(*)--available access accumulators

The number of elements required in each array is equal to the

number of memory modules. In a real system these arrays would be

hardware registers. The current estimate of the available bandwidth

from each module is updated by the Program Executer during each step

of execution processing immediately after the total number of access

requests to each memory module has been determined for the processing

step. The IBWCTR array is also updated at this time. The updating

of the NAA array is as follows.

NAA(I) NAA (I) *(1 - 1/MAXCNT) if IBWCTR(I) > MAXCNT
and NTR(I) > ICON1

NAA(I)-NAA(I) * (1 - 1/MAXCNT) + (ICON1 - NTR(I))/MAXCNT

if IBWTR(I) > MAXCNT

and NTR(I) < ICON1

NAA(I)-NAA(I) * (IBWCTR(I))/MAXCNT

+((MAXCNT - IBWCTR(I)) * ICON1 * MAS(I)/(MAXCNT *
MODSIZ)

if IBWCTR(I) < MAXCNT

and NTR(I) > ICON1



38

NAA(I)-NAA(I) * (IBWCTR(I)/MAXCNT

+((MAXCNT - IBWCTR(I) * ICON1 * MAS(I))/MAXCNT * MODSIZ)

+ (ICON1 - NTR(I))/MAXCNT

if IBWCTR(I) < MAXCNT

and NTR(I) > ICON1

where MAXCNT is a parameter of the system that effectively sets the

number of processing periods over which the bandwidth estimates are

obtained. IBWCTR(I) contains the minimum of the number of processing

steps since an allocation or release of space from memory module I has

been made and MAXCNT, NTR(I) contains the total number of accesses

requested from module I at the processing step under consideration, and

ICON1 is the number of memory module cycle periods per simulation step.

Estimation of Job Bandwidth Requirements

Estimates of job bandwidth requirements are based on some assumed

known mix of the types of instructions to be executed by the job as

well as the speed of the system's hardware processors. Actually only

two types of instructions are assumed for these calculations. The

estimated bandwidth requirements are computed as follows:

MNAR = ICON/(ITA + IPCT * (NPCS * MIX + NPCL(l - MIX)))

where ICON is the number of processor cycle periods per simulation step,

ITA is memory access time, IPCT is the processor cycle period time,

NPCS is the number of processor cycles per short instruction, NPCL is



39

the number of processor cycles per long instruction, and MIX is

the proportion of short instructions that the job performs.

Processing Scenario

In order to clear up any ambiguities that may have inadvertently

arisen from the discussions of the preceeding parts of this chapter

let us consider the sequence of events that take place during a

simulation run following job generation and initial preprocessing. In

this discussion assume that the non-feedback scheduler/allocator is

employed and only SIMPLEX jobs were generated.

(1) A schedule is obtained whereby the jobs that are ready

for execution are ordered according to the priority scheme.

(2) Memory is reserved for as many of the jobs that were scheduled

in step (1) as is available from the memory space.

(3) As many IOPs as is consistent with system constraints is

assigned to the jobs that are in the present schedule and

have memory reserved in the order of the schedule.

(4) The IOPs that were assigned in step (3) begin loading the jobs

to which they are assigned and continue this loading operation

until each of their respective jobs has been loaded into

memory, whereupon they are reassigned to other jobs or else

placed in an idle condition until some job requires their

service.



40

(5) As soon as a job becomes loaded its status is set to wait CPU.

(6) A search is then made for a CPU for assignment to this job.

The first idle CPU is assigned provided one is found, other-

wise a search is made to see if a job of lower priority has

a CPU. If the latter condition exists thenthe lowest

priority job having a CPU is preempted and its CPU is

reassigned to the higher priority job.

(7) The job obtaining the CPU then begins program execution and

continues until it either completes execution, reaches an I/O

interrupt point or is preempted by a higher priority job. In

case of reaching an I/O interrupt point in its program the

CPU may either be retained by the job if its priority is

sufficiently high and no other jobs are currently waiting

for a CPU or a search may be made for some other job needing

the service of a CPU. If in the latter case no job is found

waiting for a CPU then the CPU may be placed in an idle

condition and remain so until some job has a need for its

service. Having in some manner disposed of the CPU that was

assigned to the job under consideration, a search is then

made for an idle IOP for assignment to this job. In case such

an IOP is found it is assigned to and remains the exclusive

property of this job until this job's current I/O processing

assignment is completed, thereafter a search is made for

some other job that is waiting for an IOP. If the new job



41

that is waiting for an IOP is not in a load condition or

if the system constraint concerning the number of IOPs that

may be assigned to load operations at any given time is not

presently reached then the IOP is assigned to this new job,

otherwise the search is continued either until a suitable

new job is found or no further candidates remain. If the

latter condition is the case then the IOP is set to an idle

state.

(8) If the new job under consideration already has a CPU then

processing continues; otherwise continuation for this job is

made in step (6).

(9) The job processing described in steps (1) through (8) contin-

ues until a new schedule is triggered by system resource

utilization and system status and job queue status monitors.

The entire process beginning with step (1) is repeated with

inclusion of any jobs that were not completed during

processing of the previous schedule.

Efficiency Considerations

In order for the efficiency of a multiprocessor system as hypoth-

esized so far in this paper to approach the efficiency that is obtainable

from a uniprocessor, i.e., a special case of the multiprocessor

having only one CPU, certain relationships must exist between the

distribution of memory space and bandwidth requirements of the input

job set and that available from the memory as well as speeds of the CPUs

and IOPs relative to that of the memory.



42

From the above scenario it appears that if no jobs are perma-

nently resident in the main memory then the IOPs that are assigned to

load operations should be able to load jobs as fast as the CPUs

and IOPs that are assigned to processing operations can complete

jobs, otherwise the CPUs and a portion of the main memory stand

a higher chance of being idle while waiting for jobs to be loaded

into the memory. On the other hand, if these IOPs can load jobs

faster than the CPUs and IOPs that are assigned to processing

operations can complete jobs then these IOPs and that portion of main

memory into which they may have just completed loading will be idle

until some jobs are completed and their memory space is relinquished,

thereby allowing more jobs to be loaded. Furthermore, the IOPs that

are assigned to processing operations should be able to perform the

I/O processing for the jobs that are initiated as fast as the CPUs

can perform the CPU processing on this same set of jobs, otherwise a

portion of the total space bandwidth product of the memory and either

CPU or IOP time is wasted while one is waiting on the other. Thus

it seems reasonable that to approach maximum utilization, after a

steady state condition has been reached, approximately one-half the

memory should be utilized for loading in new jobs and that the other

half should be utilized for processing of those jobs that have completed

loading. Furthermore, half of that half of memory space in which jobs

are being processed should on the average be utilized for CPU processing

with the other half of that half being utilized for I/O processing.

In this manner utilization of memory, CPUs and IOPs should approach

the maximum value that is obtainable with a particular set of jobs.



III. THE MEMORY CONFLICT PROBLEM

Memory conflict arises in the multiprocessor system when two

or more processors attempt to obtain an access from the same memory

module simultaneously. Obviously if all the processors involved in a

conflict desired to read from the same location or write the same

information into the same location then there would be no logical reason

why they could not, however, the expected frequencies of these occur-

rencies are so small that they do not warrant the cost involved in

detection and provision of special hardware for implementation. Thus,

we may assume that all but one of the processors involved in a memory

access conflict will be delayed by one memory module cycle period for

each such conflict in obtaining the accesses that they desire. If it

is assumed that no look-ahead or look-behind is used in obtaining

memory accesses then all but one of the programs whose processors are

involved in a particular memory access conflict will be delayed by

a memory module cycle period. In this regard let us define slowdown

of a particular job and slowdown of the system. In order to do this

we need to assume a period of time over which the amount of slowdown

is to be measured. It is most convenient to measure time by counting

the number of memory module cycle periods contained in the interval

of time that it is desired to measure. Then the amount of slowdown

for a particular job over some interval of time containing T memory

43



44

module cycle periods is the ratio of the number of memory module cycle

periods at which the job made a memory access request but did not obtain

one to the total number of memory module cycle periods at which the

job made an access request during the interval T. Similarly the slow

down of the system over this interval T is the ratio of the sum over

all memory module cycle periods in the interval T of the sum of the

total number of access requests made at each period but not granted to

the sum over all memory module cycle periods in the interval T of

the sum of the total number of accesses requested.

These definitions may be made clearer through the following

equations that are useful for calculating the amount of slowdown.

1 if job j requests a memory access
from module k at time i.

Let r(i,j,k) =
otherwise

1 if r(i,j,k)=l and module k does not
grant an access to job j at time i.

Let rng(i,j,k) =
otherwise

Let NMOD be the number of memory modules in the system. Then slowdown

for job j (SLDN(j)) over the interval [a,b] is given by

b NMOD
_7- rng(i,j,k)

SLDN (j)= i=a 
k =l

( b NMOD

i=a k=l



45

Let NJOB(i) be the number of jobs in the system at time i. Then

slowdown of the system over the interval [a,b] is given by

b NMOD NJOB(i)

2 > > rng(i,j,k)
SLDNTOTAL = a k=l jl

X( b NMOD NJOB(i)
MAX 1, y- y- :- r(i,j,k)

i=a k=l j=l

It would be useful to obtain a feeling of how severe this problem

really is under certain conditions.

Let us assume that the sum of the average access rates to a

particular memory module of all processors executing jobs having space

in this module to be less than or equal to the bandwidth of the module.

First let us consider the simplest case in which two processors

are simultaneously executing programs from the same memory module and

the mean access rate of each processor to the module is one-half the

bandwidth of the module and uniformly distributed in time. Then at

a given module access time t the probability of a conflict is 1/4

provided no conflict occurred during the previous access period t-l,

and 1/2 provided a conflict occurred at time t-l. This is true since

it may be assumed that if a processor does not obtain the access that

it wants at time T then it will keep trying to obtain this same access

at time T + 1 with probability i. On the other hand, if it obtains an



46

access. at time T then its probability of attempting to obtain an access

at time T + 1 is 1/2. Thus we have the relations

Pt = 1/4(1 - Pt-l) + 1/2 Pt-i = 1/4 + 1/4 Pt-1

Pt-l = 1/4 + 1/4 Pt-2

Actually there are only a finite number of these relations that

we need to consider in order to find the probability of conflict at

time t. However, it is easier to solve for the case of an infinite

number of these relations. In the infinite case

_(l)i 1/4 11 - 1/4 3

Thus, in this simple case we see that if each processor has equal

probability of obtaining an access in case of conflict then each

program is expected to proceed at 5/6 = .833 of normal speed. This may

be justified on the basis of the assumption that the number of accesses

over a given time interval is from a normal distribution for each job.

The combined distribution is then also a normal distribution with

mean equal to the sum of the means of the individual distributions and

variance equal to the sum of the individual variances. Thus the

combined standard deviation is less than or equal to the sum of the

individual standard deviations.

Under the constraint that the sum of the mean bandwidth require-

ments of the programs being executed from a memory module does not

exceed the module bandwidth then the case where each program has equal



47

bandwidth requirements is the worse case for conflict. This may be

intuitively verified in the simple case:of two processors simultaneously

executing programs from the same memory module. Consider the case

where the mean bandwidth requirements are 3/4 and 1/4 that of the

memory module and uniformly distributed in time. Also assume that the

probability of each processor obtaining the access in case of conflict

is 1/2. Then the probability of conflict at time t is 1/4 • 3/4 if no

conflict occurred at time t-l. It is 1 * 1/4 if conflict occurred at

time t-l and the processor with bandwidth requirement of 3/4 did not

receive an access at time t-1. It is 1 * 3/4 if conflict occurred at

time t-l and the processor with bandwidth requirement of 1/4 did

not receive an access at time t-l. Thus

Pt = 3/16 (1 - Pt-1) + 1/4 " Pt-1 * 1/2 + 3/4 Pt-1 " 1/2

= 3/16 + 5/16 - Pt-l

so Pt = 3/16 + 15/256 + 75/4092 + . .

Thus we have another geometric sequence with initial value 3/16 and

common ratio of 5/16. In the infinite case the probability of conflict

is P = 3/11. The general result is easily proven by elementary methods

of calculus.

In the general case let xBm be the mean bandwidth requirement of

the first job and let y * Bm be the mean bandwidth requirement of the

second job and assume that the access rate for each job is uniformly

distributed in time. Furthermore let c = x + y < 1 where c is a

constant. Then



48

Pt = x * y (1 - Pt-1) + x Pt- 1/2 + yPt-1 1./2

= xy - xyPt- 1 + 1/2 (x + Y)Pt-1

= xy + 1/2 (x + y -2xy)Pt_ 1

Pt-1 = xy + 1/2 (x + y -2xy) Pt-2

so

Pt = xy + 1/2 (x + y -2xy)(xy + 1/2 (x + y -2xy))P 2

= xy + 1/2 (x + y -2xy) (xy) + [1/2 (x + y -2xy)]2 p
t-2

Finally

Pt = xyZ [1/2 (x + y -2xy)]i
i=o

xy

1 - (x + y -2xy)

x(c - x)
1 - c -2x(c - x))

Differentiating with respect to x and setting result to 0 we obtain

dPt (c -2x)1 - (c -2x(c -)) (xc - x2) c -2x

dx- (c--2x(c - x)) 0.

Thus

(c 2x)(l c + cx x (xc x21( c -2x =0

1
x -c.

2



49

Now consider 3 processors executing programs from a single

memory module. Assume also that the access rate for each program is

uniformly distributed over its processing period and that all processors

have equal probability of obtaining an access in case of conflict. We

must now worry not only with the probability of conflict but also with

the degree of conflict. Let us denote these degrees at time t by

Pl,t and P2,t where Pl,t is the probability of conflict involving 2

processors and P2,t is the probability of conflict at time t involving

3 processors.

The probability of conflict of degree 1 at time t is the proba-

bility that exactly two processors contend for an access at time t.

Thus the probability of contention of degree 1 at time t is 3 3 3 \2

provided no contention occurred at time t-l. The probability of

2 1 2
contention of degree 1 at time t is 1 * ( i provided contention

of degree 1 occurred at time t-l. It is equal to 2/3 provided conten-

tion of degree 2 occurred at time t-l. Thus

= 2 1 _ P - + 4 .Pl + 2 P
l,t (1 - ,t- 2t-) + l,t- + P2 ,t-1

Plt t + Pl,t- + -t P2,t-1

Similarly the probability of conflict of degree 2 is

P2,t= 3 1 - Pt- 2,t-1 1\ 2 ,t 1 P2,t-1



50

Thus by backing up step by step in the time and solving for Plt

recursively we find that

Plt 9(i1 +2,t-i

and similarly,

22t2 i-1 i-1 1 t
(B)i1 +7- 7 lt-i

i=l i=l

In order to make the problem tractable let us assume that the

probabilities of conflict of each degree are all stationary time series

[13], [14]. Thus

P P for i = 1, 2, .t-i j,t

Then we may obtain

2 4
Pl,t = 7 +  2,t

1 2
2,t 19 Pl,t

Therefore

S- 42 .336l, t 125

and

P = 209 = .088
2,t 2375



51

The slowdown due to memory conflict-is>

1 2
x .336 + x .088 = .112 + .059 = .171

3 3

Under the assumption of equal chance for obtaining an access in

case of conflict each program is expected to proceed at .829 of normal

speed.

For the four processor case under the assumptions as above the

pertinent equations are:

_ 27 45 '  27
l,t 101 101 2,t 101 3,t

_ 3+ 6 +45P =- + -AP + P
2,t 43 43 l,t 43 3,t

and
1 3 15

P3,t 193 + 193 Pl, t + 193 P2,t

The solution to this set of simultaneous equations is:

Pl,t = .326, P2,t = .137 and P3,t = .0209

Thus the slowdown is

3 1 1
P3,t + x P2,t + x Pl,t

= .0157 + .0685 + .0815 = .166

so each program proceeds at .834 normal speed.

Thus we note at this point that the slowdown due to memory

contention is not very sensitive to the number of processors executing

programs from a single m6dule so long as the sum of the means of the



52

bandwidth requirements are kept less than or equal to that of the

memory module.

Now let us consider the general case of N processors executing

N programs from a single memory module in which each processor 
has a

mean access rate equal to 1/N of the bandwidth of the memory module.

Also assume the following:

(1) The access rate for each program to the memory module is

uniformly distributed over its processing interval.

(2) All processors have equal chance for obtaining the access in

case of an access conflict.

(3) The probabilities of conflict of each degree form stationary

time series.

(4) All contending processors not gaining an access when conflict

occurs continue to contend for an access at subsequent access

periods until they obtain an access.

Under these conditions the general formula for the probability of

conflict of degree k at time t is given by

MIN(N-1, k+l)

( N-i ( N - l N - k - l - K + 1- i

Pk,t k+l-i -- Ni,t-i (3.1)

i=0

for k = 1, 2, . . N-l

N-1
and Po,t-1 = 1 - E Pj,t-1

j=1



53

This formula leads to a set of N-i simultaneous linear equations

in N-1 unknowns when developed in the manner as shown for 2,3 and 4

processors.

The amount of slowdown due to memory contention under the

assumptions of the preceeding discussion is plotted for 2 through 16

processors in Fig. 3-1. Also plotted are three other curves repre-

1 1 3
senting mean bandwidth requirements of 4- , - and -- times

the memory module bandwidth for each processor. From this figure it

should be observed that the amount of slowdown due to memory contention

peaks at approximately 17% for the three processors case and decreases

slowly to approximately 11% for 16 processors when the mean bandwidth

requirement per processor is equal to 1/N • Bm where Bm denotes the

memory module bandwidth. Thus we may conclude, aside from the physical

problem of contention resolution, that while the amount of slowdown

due to memory contention (i.e., processors getting in one another's

way) is not insignificant it is not intolerable. In this context

it should be pointed out that a distinction has been made between slow

down due to conflict when sufficient memory module bandwidth is

available to meet the mean demands of all the jobs being simultaneously

executed from that module and slowdown due to contention when insuf-

ficient bandwidth is available to meet the mean demands. In the first

case the slowdown may be attributed completely to the relationships

between the time of occurrence of the individual job demands and the

manner in which the actual execution of each program proceeds (i.e., on



.20

i4ean Bandwidth Requirement = i/iBm

.15 1

.10 Mean Bandwidth Requirement = -- *Bm

4N'

0(05
Mean Bandwidth Requirement -- m

Mean Bandwidth Requirement = *BM

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. OF PROCESSORS

Fig. 3-1. Slowdown due to memory contention without bandwidth limiting



55

a fixed sequence of instruction executions in which no remaining

instruction can proceed until its immediate predecessor has been

executed). Attempts to lessen the effects of slowdown due to conten-

tion in this first case include the use of look-ahead and look-

behind techniques. Look-ahead attempts to capitalize on the basically

sequential nature of computer programs by reading the contents of the

next n consecutive instruction locations from the main memory (usually

an interleaved memory) at each memory access period into a dedicated

local storage area for the processor obtaining the access at each

period. This technique is described in considerable detail by Burnett

[1] and by Burnett and Coffman [2]. The look-ahead technique is also

embodied to a certain extent in high speed buffer storage memory

systems as described by Conti [3] [4] and by Liptay [5] [6]. Look-

behind attempts to exploit short length backward branches in computer

programs such as short DO loops by retaining the preceeding n instruc-

tions in a local dedicated storage area for the processor.

Slowdown due to localized bandwidth limitation can occur with

a uniprocessor as well as with a multiprocessor but the probability of

occurrence is much greater with the multiprocessor. This probability

is high when several processors-are simultaneously active and when

module size is much greater than mean job space size or when job space

requirements are dispersed over a large range and several high band-

width jobs are simultaneously executed from a single memory module.

The complement problem to localized bandwidth limitation is inefficient



56

bandwidth utilization caused either by jobs with large space to band-

width ratio requirements or by the use of scheduling and memory

allocation routines that do not take bandwidth requirements into

consideration.

The effects of these second causes of slowdown and bandwidth

nonutilization will be explored in the next section.

The amount of nonutilization of memory bandwidth can also be

easily obtained by means of the preceeding analysis through the

following equation:

nu =  " 'ot-

where

Pnu = probability of nonutilization,

N = number of processors accessing the common memory module,

A = mean bandwidth requirement of each job,
N

and

pt-l = probability of no conflict at time t-l.

Fig. 3-2 shows a plot of Pnu for four values of A equal to .25, .50,

.75, and 1.0.



1.0

.8 Bandwidth requirements - BN

0

N

" .6 .50
Bandwidth requirements = * Bm4AJ

1.0
.2 Bandwidth requirements *B

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors (N)
Fig. 3-2. Bandwidth Nonutilization.



IV. LOCALIZED BANDWIDTH LIMITATION AND MISMATCH

In equation 3.1 we may replace 1/N by z where z represents a

time average probability that a job will require an access from its

memory space at any given access period without regard to remembrance

of previous response to access requests. Doing this we obtain

MIN(N-i,k+l)

Pk,t k+l-i (1-z)N-k-1 (z)k+l-i Pt. (4.1)

i=0

for k = 1, 2, . . . N-1, 0 < z < 1

N-1
and Pot- = 1- ~- Pj

j=1

Thus, z is an average probabilistic measure of the bandwidth require-

ment from some memory module of a particular job having space in that

module. Now as the bandwidth requirement of the job increases beyond

the bandwidth available from the memory module the probability of

requesting an access at any given access period approaches 1 without

regard to any recall that the job is assumed to have about a prior

access that may have not yet been granted. Thus when the combined

mean bandwidth requirements of two or more jobs that are being simul-

taneously executed from a common memory module is increased beyond the

bandwidth available from the common memory module the effects of memory

access conflict due to the processors merely occasionally getting into

58



59

each other's way is quickly swamped by the effects of bandwidth

limitation. The essence of the above statement is contained in

Fig. 4-1 in which the slowdown obtained from solutions to the simul-

taneous linear equations ensuing from equation 4-1 have been plotted

for 3 through 16 processors with values of z ranging from .25/N * Bm

through 3/N * Bm and for two processors from .25/N Bm through

2/N - Bm all with steps of .25/N , Bm . Now consider the following

tabulation obtained with the aid of the six processor case of Fig. 4-1.

Slowdown
Bandwidth Due To Total Slowdown

Requirement Bandwidth Slowdown Due To Access

+ Bm  Limitation From Curves Contention

1.00 .0000 .150 .150

1.25 .2000 .245 .045

1.50 .3333 .350 .0167

1.75 .4285 .430 .0015

2.00 .500 .500 .0000

2.25 .5555 .5555 .0000

This brief analysis indicates that the contribution of access

conflict to slowdown becomes insignificant when compared to that of

bandwidth limitation for combined mean bandwidth requirements above

1.25 times the bandwidth available from the memory module.

It is apparent that if the bandwidth demands made to all the

memory modules of the multiprocessor system is very much greater than



1.0

Bandwidth demands

.8 per processor
- Bm/N

3.O

2.75

.6 2.50

2.25

2.0

1.75 .

.4

1.50 ..

S1.25

S.2

1.0

.75

,5Q -------. . .

0 .25

2 3 4 5 6 7 8 9 10 11 12 13 1 4 15 16
Number of Processors

Fig. 4-1. Slowdown due to memory contention and bandwidth limitation.



61

that available from the modules then very little can be done through

memory allocation techniques to alleviate the problem. On the other

hand if the problem is one of distribution wherein the overall band-

width demands are unevenly distributed among the memory modules then

scheduling and allocation techniques which take into account bandwidth

considerations may be effective in relieving the problem. First let

us try to get a feeling for how severe the problem actually is.

Suppose that as input to the multiprocessor system we have an

unlimited supply of incoming jobs (in our case a small set of recurring

jobs) of two mean bandwidth requirements and one space requirement.

The two mean bandwidth requirements are b1 and b2 where bl + b2 = Bm

and bl>> b2 . The one space requirement is Sl which is equal to one-

half the space of a memory module (Sm). Furthermore let us assume that

each type of job requires approximately the same amount of processing

time and there are enough processors so that all jobs having memory

space may be in progress simultaneously. Now depending upon how the

jobs occur in time and how the job scheduler and memory allocator act

in scheduling the jobs and placing them into the memory there may or may

not be localized bandwidth limitation or mismatch. In this regard let

us assume that there are enough of either type of job in the job queue

at any schedule time to fill the available memory. Thus, a memory

module may hold one of the three combinations blbl, blb 2 , or b2b2 .

For the combination blb 1 the jobs are slowed to approximately one-half

of their normal speed due to insufficient bandwidth. However, the



62

bandwidth utilization is expected to be close to 1. In the second

case (blb2 ) the jobs are expected to proceed at approximately normal

speed except for memory access conflict. The bandwidth utilization

in this case is expected to be close to 1. In the case with b2b2

the jobs are expected to proceed at normal speed except for memory

access conflict but the bandwidth utilization is expected to be closer

to 0 than to 1. As a specific example let bl = .9Bm and b2 = .1Bm.

Then with the combination blb1 the slowdown due to insufficient band-

width is expected to be .44. For the combination blb2 no slowdown due

to bandwidth limitation occurs and bandwidth utilization is close to 1.

The b2b2 combination should not be slowed down due to bandwidth limita-

tion but bandwidth utilization is expected to be only .2. With a

random placement the probabilities of the combinations blbl, blb2 ,

b2b2 are 1/4, 1/2, and 1/4 respectively. Thus slowdown of the overall

system due to localized bandwidth limitation under this random place-

ment is expected to be 1/4 x .44 + 1/2 x 0 = .11 and expected bandwidth

utilization is 1/4 x 1 + 1/2 x 1 + 1/4 x .2 = .25 + .50 + .05 = .8.

The above introductory example suggests a method for investigating

the amount of slowdown and nonutilization due to localized bandwidth

limitation and mismatch under a random placement scheme. To aid in

this investigation let us assume the following:

(1) The input job stream consists of an infinite supply of jobs

of one space requirement Sl = Sm/n and n bandwidth require-

ments.



63

(2) Jobs with each bandwidth requirement occur with equal

frequency.

(3) The scheduler and memory allocator shows no bias in regard

to bandwidth requirements.

(4) Processing time is the same for all jobs regardless of band-

width requirement.

(5) The sum of the bandwidth requirements is A Bm and the actual

requirement array BW is BW = (0, 1/n W, 2/n , W, . . .

n--. W),where W - 2A
n n(n-l)

Under (1), (2), (4) and (5) there is at least one job scheduling

and allocation scheme in which (3) holds and no slowdown due to bandwidth

limitation or non-utilization of bandwidth due to mismatch results.

This scheme is of course the one in which one job of each bandwidth

requirement is loaded into each memory module. A random placement

scheme would result in total bandwidth requirements that are in accor-

dance with the multinomial distribution. For example, for the three

processor case there are three different patterns of bandwidth selections.

These three patterns are (x)(y)(z), (x)(y,y), and (x,x,x). The x's,

y's and z's represent a particular bandwidth requirement. Clearly,

in so far as the total bandwidth requirement is concerned permutations

of the groups in a pattern or permutations of the elements in a group of

a pattern or elements among groups of the same size in a member of a

pattern makes no difference. For A = 1i, the first pattern has the



64

single member (0)(1/3)(2/3). It occurs with frequency

3!/(1! x 1! x 1!) = 6 when all its permutations are totaled. For

the second pattern the members are (0)(1/3, 1/3), (0)(2/3, 2/3),

(1/3)(0,0), (1/3)(2/3, 2/3), (2/3)(0,0), and (2/3)(1/3, 1/3). Each

of these members occurs with frequency 3!/'(l! x 2!).= 3. Finally, the

third pattern has members (0, 0, 0), (1/3, 1/3, 1/3) and (2/3, 2/3,

2/3). Each of these members occurs with frequency 3!/3! = 1.

The distribution of total bandwidth requirement, slowdown due

to bandwidth limitation and bandwidth utilization obtained by means

of the above multinomial technique is shown in Fig. 4-2 for the three

processor case.

Unfortunately, the analysis by means of the multinomial

technique is impractical for more than about eight or nine processors

due to the very large number of terms that must be examined with more

than this number of processors. For example, the number of terms for

the three processor case is 10, for four processors it is 35 and for

five processors it is 123' Thus in the low range of the numbers of

processors the number of terms to be examined appears to be growing at

the rate of approximately (3.5) i . If this rate of growth is constant

the 16 processor case will require examination of 10 x (3.5)13 -

1.183 x 108 terms. When all the time for other numbers of processors

up to 16 are added to this and runs are made for several different

values of A the amount of computer time could be several hundred hours.

Therefore, a different technique is required for the solution of the

problem. Let us use a random number trials procedure in which at each



65

10

oC 5

0 I,
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Bandwidth Requirement
Normalization Factor = NPROS * BW(NPROS)

16

12

8

, 4

0 - I I I , , I
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Slowdown

16

12

4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

C. Bandwidth Utilization

Fig. 4-2 Distributions of bandwidth requirement, slowdown
and bandwidth utilization for the three processor
case from multinomial distribution
BW(I) = (I-1)A/(.5NPROS*(NPROS-1)) , A=1.0.



66

trial n indices are generated which represents the indexes of the band-

width requirements array BW. Graphs may then be plotted for the fre-

quencies of each total bandwidth requirement range, bandwidth utilization

range, and slowdown range. The results of this procedure for 3, 10,

and 16 processors with values of A equal to 0.75, 1.0, and 1.25 are

shown in Fig. 4-3 through Fig. 4-14. The means and standard deviations

for slowdown and bandwidth utilization with A equal to 0.75, 1.0, and

1.25 are plotted for 3 through 16 processors in Fig. 4-15 through

Fig. 4-17. When interpreting these curves it should be kept in mind

that the distributions may be highly unsymmetrical about their mean

values as is evident from Fig. 4-6 through 4-14.



67

5000 samples
1500

Mean = .4977
Std. Dev. = .206

1000

500

0 P1 I I
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Bandwidth requirement/(NPROS*BW(NPROS))
Fig. 4-3 Frequency-Gram for bandwidth requirement for NPROS = 3,
EW(I) = (I-1)A/(.5NPROS*(NPROS-1)).

700 5000 samples

600 Mean = .4994
Std. Dev. =.1093

500

4o00

300

200

100

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Bandwidth requirement/(NPROS*BW(NPROS))

Fig. 4-4 Frequency-Gram for bandwidth requirement for NPROS = 10,
BW(I) = (I-1)A/(.5NPROS*(NPROS-1)).



68

800
5000 samples

Mean = .4996
Std. Dev. = .07298

600oo

400oo

200

0)

0 .1 .2 .3 -4 .5 .6 .7 .8 .9 1.0

Bandwidth Requirement/(NPROS)*BW(NPROS))

Fig. 4-5 Frequency-Gram for Bandwidth Requirement for NPROS = 16,
BW(I) = (I-1)A/(.5NPROS*(NPROS-1)).



69

4500

5000 samples

Mean = .02423

Std. Dev. = .07043
3000

1500

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

1800
5000 samples

Mean = .71495
Std. Dev. = .26083

1200

S600oo

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth utilization

Fig. 4-6 Frequency Grams for slowdown and bandwidth utilization
NPROS = 3, A = 0.75 BW(I)=(I-1)A/(.5NPROS*(NPROR-1)).



70

3300

5000 samples
mean = .10268

std. dev. = .15098

U 2200

1100

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

3300

5000 samples
mean = .84037

o std. dev. = .24556

2200

1100

0 I i I

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-7. Frequency-grams for slowdown and bandwidth
Utilization, NPROS + 3, A = 1.0, BW(I)
(I-1)A/(.5NPROS*(NPROS - 1)).



71

2100

5000 samples
mean = .88804
std. dev. = .20846

1500

750

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

3000
5000 samples
mean = .21217
std. dev. = .18751

U 2000

1000

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-8. Frequency-grams for slowdown and bandwidth

Utilization, NPROS = 3, A = 1.25, BW(I) =
(I-1)A/(.5NPROS*(NPROS-1)).



72

4800

5000 samples
mean = .00168

3200 std. dev. =.01167

1600oo

0-
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

480 -

5000 samples
mean = .74732

std. dev. = .13476

( 320

16o

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-9. Frequency-grams for slowdown and bandwidth
Utilization, NPROS=10, A = 0.75, BW(I) =
(I-1)A/(.5 NPROS*(NPROS - 1)).



73

3000

5000 samples
mean = .06196

std. dev. = .08455
2000

W

1000

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

3000

5000 samples
mean = .92389

r std. dev. = 11083
S2000

1000

0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-10. Frequency-grams for slowdown and bandwidth
Utilization, NPROS=10, A = 1.0, BW(I) =
(I-1)A/(.5NPROS*(NPROS-1)).



74

900

5000 samples
mean = .18969
std. dev. = .12595

600-

300

0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1,0

A. Slowdown

4500-

5000 samples
mean = .98330
std. dev. ='.05585

c 3000-

1500-

0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-11. Frequency-grams for slowdown and bandwidth
Utilization, NPROS=10, A = 1.25, BW(I)
(I-1)A/(.5NPROS*(NPROS - 1)).



75

60oo

5000 samples
mean = .00042

std. dev. = .00453
4000

0)

m 2000

0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

600

5000 samples
mean = .7910
std. dev. = .10835

? 400

oo.

200

0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-12. Frequency-grams for slowdown and bandwidth
Utilization, NPROS=16, A = 0.75, BW(I) =
(I-1)A/(.5NPROS*(NPROS-1)).



76

3000

5000 samples
mean = .04878
std. dev.- = .06853

O 2000

1000

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

3000

5000 samples
mean = .93855
std. dev. = .08884

Q2000

1000

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-13. Frequency-grams for slowdown and bandwidth
Utilization, NPROS = 16, A = 1.0, BW(I) =
(I-I)A/(.5NPROS*(NPROS-l)).



77

600oo

5000 samples
mean = .18936
std. dev, = .1080

400

200

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A. Slowdown

60o00

5000 samples
mean = .99335
std. dev. = .03119

cy 4000

2000

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

B. Bandwidth Utilization

Fig. 4-14. Frequency-grams for slowdown and bandwidth
Utilization, NPROS = 16, A = 1.25, BW(I) =
(I-1)A/(,5NPROS*(NPROS-1)).



1.0

.9

.8 Bandwidth utilization mean

.7

.6

.5

.3

Bandwidth utilization Std. Dev.
.2

.1
Slowdown mean

Slow down Std. Dev.

0

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 4-15. Means and Standard Deviations For Slowdown and Bandwidth Utilization, A = 0.75.



1.0

Bandwidth utilization mean

.9-

.8

.7

.6

-5

.4

.3

Bandwidth utilization Std. Dev.
.1

Slowdown Mean

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 4-16. Means and Standard Deviations for Slowdown and Bandwidth Utilization, A = 1.0.



1.0

Bandwidth utilization mean

.8

.7

.6

.5

.4o

.3

Slowdown mean

.2

Slowdown Std. Dev.

.1 - Bandwidth utilization Std. Dev.

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 4-17 Means and standard deviations for slow down and bandwidth utilization, A=1.25



V. THE PROCESSOR TO IEMORY INTERCONNECT PROBLEM

In Fig. 1-1 we have implied that each processor may gain access

to any memory module through the interconnection network. A major

requirement of this network is that it not cause any slowdown in the

operation of the system; i.e., it should allow transfer of data in a

random access fashion to or from the memory as fast as the maximum

speed of the memory. Furthermore, access to each memory module should

be made on a memory module cycle basis so as to avoid potential waste

of memory bandwidth that is inherent in schemes which make a processor

to module connection with minimum interconnection time extending over

several module cycle periods.

The two hardware arrangements which appear to be able to meet

these requirements, at least from a theoretical standpoint, are the

multiplexed bus and the full crossbar as depicted respectively in

Fig. 5-1 and 5-2. The multiplexing of the multiplexed bus could

conceivably be done through some frequency diversity or angle modulation

scheme, however, these techniques are not compatible with the present

state of main memory logic elements nor is the transmission medium

noisy enough or signalling power so severely limited as to warrant the

additional complications imposed by such schemes.

Thus, we are left with time multiplexing. The time multiplexed

bus requires less hardware to implement than the full crossbar, but

81



82

PROCESSOR PROCESSOR MEMORY MEMORY
# 1 # N MODULE MODULE

#1 #M

Fig. 5-1 Logic structure of time multiplexed bus

MEMORY MEMORY MEMORY
MODULE MODULE . , MODULE

#1 #2 #M

PROCESSOR
#1

PROCESSOR
#2

PROCESSOR
#Fi. 52 Loic structure of full crossbar

Fig. 5-2 Logic structure of full crossbar



83

more stringent speed requirements are implied by the time multiplexed

bus since only one processor can be connected to one of the memory

modules at a time. Therefore, in making the interconnections, it is

sequential by module or by processor depending upon the end of the

bus from which the arrangement is viewed. The full crossbar requires

more hardware to implement than the time-multiplexed bus but its speed

requirements are much less severe when several processors and memory

modules must be interconnected. Moreover, the additional hardware is

repetitive with a regular structure. This regularity in logic networks

is amenable to large scale integration techniques. Hence the cost of

the full crossbar does not necessarily increase directly with the

number of processors and memory modules which must be interconnected.

For these reasons the full crossbar scheme is considered to be the best

candidate for the multiprocessor system even though it may not be quite

as flexible as a bus system in regards to ease of expansion.

The crossbar interconnection arrangement is equivalent to a set

of switches with one switch per memory module as shown in Fig. 5-3.

This version will be used in developing an interconnection scheme for a

priority driven multiprocessor.

In a priority driven system each job that is executed by the

system obtains use of the system's facilities on a demand basis according

to its priority relative to that of any other jobs being simultaneously

executed by the system. Thus in the context of use of the memory

bandwidth each job that is being processed by the multiprocessor system



84

MEMORY MEMORY MEMORY
MODULE MODULE . . MODULE
#1 #2 #M

*

PROCESSOR PROCESSOR PROCESSOR
#1 #2 #N

Fig. 5-3 An equivalent circuit of the full crossbar.



85

should be able to obtain accesses from the memory modules in which it

has space approximately in accordance with its relative priority and

as it so demands in time. From an overall efficiency standpoint the

determination as to which processor has the right of access to a given

memory module at a given time should be made on a module cycle basis

since if some processors do not demand an access at a certain module

cycle time due to the variability of the program that they are executing

then they need not be considered in the resolution of possible access

conflict. Consequently lower priority jobs stand a better chance of

obtaining accesses during slack periods of memory access activity by

the higher priority jobs. This means, however, that the determination

of which processor is to obtain the next access from each memory

module must be made in less than a memory module cycle period. Thus

only simple schemes implemented in hardware appear to be feasible. The

scheme must also ensure that the lower priority jobs should not be

locked out from accessing memory modules in which they have space for

periods longer than their relative priority dictates. Thus, our

scheme for determining the right of access to each memory module should

be responsive not only to the relative priorities of all contenders for

each access but also to some simple function of the amount of time that

each job has been in contention for an access but has not yet obtained

it.

In view of the above discussion consider the access right function

of priority and time in contention given by



86

ACR (Pj, tc) = tcPj

where tc is the number of module access periods that job j has been in

contention for an access but has not yet received it, and P is the

priority of job j. This simple function seems to possess most of the

characteristics that we require. It may be obtained simply by adding

the priority of the job to the present value of the function at each

access period at which job j does not obtain the access that it is

contending for. Otherwise, the value of the function is set back to

the priority of job j if job j receives the access that it is contending

for; thereby, in either case, readying for the next access period. The

contention resolution process then consists of selecting from among all

jobs that are contending for an access from a particular memory module

the job possessing the largest access-right word. In case of a tie

some mechanism is needed to determine a winner. Let us temporarily

assume that the processors are ranked according to their numbering

with lowest number representing highest ranking.

Now let us see how this scheme will work through a short example.

Suppose processors 1 through 4 are executing jobs A, B, C, and D with

priorities 50, 100, 200, and 25 respectively from a single memory

module. Furthermore, let us assume that each processor is in contention

for every module access, regardless of whether or not it received the

preceeding access. This represents an extreme case of bandwidth

limiting but it is entirely possible in a multiprocessor. Underlines

indicate the job obtaining the access in the tabulation shown in Fig. 5-4.



RANK PRIORITY TIME

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

1 50 100 150 200 50 100 150 200 50 100 150 200 250 300 350 400 50 100 150

2 100 200 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100

3 200 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400

4 25 50 75 100 125 150 175 200 225 250 275 300 25 50 75 100 125 150 175

Period of length 12

Fig. 5-4. Tabulation of Access Right Word as a Function of Time for
Priorities of 50, 100, 200, and 25.



88

From this tabulation it should be observed that the sequence of accesses

granted becomes periodic after time T3 and has period of length 12.

During this period jobs A, B, C, and D received accesses in the

ratios of 1/12, 1/6, 1/2 and 1/12 respectively. Their priorities

relative to their total priority are 2/15, 4/15, 8/15 and 1/15

respectively. The:next natural question is concerned with whether or

not the actual ratios of accesses granted can be made to more closely

approach the priority ratios by some permutation of the ranking of the

processors. There is a total of 41 = 24 different rankings of the

four processors. The results for all 24 rankings are shown in Fig. 5-5.

From this figure we may observe that the exact priority ratios in

accesses granted may be obtained by ranking the processors according to

the priorities of the jobs that they are executing.

Unfortunately, the exact priority ratios in accesses granted can

seldom be obtained by ranking the processors according to the priorities

of the jobs that they are executing. However, this technique does

appear to result in a more equitable distribution of accesses when some

of the priorities are multiples of some of the others. It has no

effect when no priority is a multiple of any of the others. Thus its

adaptation does no harm in the latter case. Therefore, from this point

on, let us assume that the processors are first ranked according to the

priorities of the jobs that they are executing and secondarily accord-

ing to their numbering. In this manner we preclude the possibility

of a tie.



PRIORITY RANKING

50 1 1 1 1 1 1 2 2 3 3 4 4 2 2 3 3 4 4 2 2 3 3 4 4

100 2 2 3 3 4 4 1 1 1 1 1 1 3 4 2 4 2 3 3 4 2 4 2 3

200 3 4 2 4 2 3 3 4 2 4 2 3 1 1 1 1 1 1 4 3 4 2 3 2

25 4 3 4 2 3 2 4 3 4 2 3 2 4 3 4 2 3 2 1 1 1 1 1 1

Length Before
Becoming Periodic 3 3 8 3 8 8 9 9 9 9 9 9 8 8 8 8 8 8 3 8 9 8 9 8

Periodic Length 12 12 12 12 12 12 14 14 14 14 14 14 15 15 15 15 15 15 8 8 8 8 8 8

00

ACCESS FRACTION

Periodic
Length

Priority Fraction 8 12 14 15

50 2/15 1/8 2/12 2/14 2/15

100 4/15 2/8 3/12 4/14 4/15

200 8/15 4/8 6/12 7/14 8/15

25 1/15 1/8 1/12 1/14 1/15

Fig. 5-5. Tabulation of Access Mechanism for All Processor Ranking with Four Jobs
of Priorities 50, 100, 200, and 25.



90

In the preceeding example all the priorities were multiples or

divisors of each other. Kowever, we would like to know what happens

when the priorities are not multiples, or divisors of each other. In

this regard let us observe the following facts about this scheme for

the resolution of access conflicts.

(1) Under the assumption that N processors simultaneously begin

contending for an access at time 1 with their access right words all

equal to the priority of the jobs that they are executing, and that

all contend for every access, the length (i.e., no. of memory module

cycle periods) before the lowest priority job obtains its first access,

designated by LBLP, satisfies the relation

MAX(N, [j + 1) < LBLP < + 1
L PL

where PH is the largest priority, PL is the smallest priority,

and fxl indicates the smallest integer > x.

This is easily verified since the lowest priority job cannot obtain

an access before any of the higher priority jobs nor before its access

right word is greater than the highest priority. Thus the left-hand

portion of the relation must hold. Concerning the right-hand portion

of the relation, it is observed that, considering the N-1 highest

priority jobs alone, the largest value that any of their access right

words may reach before the lowest priority job obtains its first access

is (N-1)PH. Thus the largest value that the lowest priority job's



91

access right word must exceed before obtaining its first access is

(N-) PH.

(2) It is difficult to make improvements on the bounds in (1)

without recourse to the exact ratios of all the priorities involved.

An analytical formulation in terms of these priority ratios and

number of contending processors appears to be a formidable problem in

itself and would actually add very little to the task at hand. The

results of a statistical analysis would be more useful in gaining an

overview of the manner in which the access granting mechanism is

expected to work.

(3) The proposed scheme performs poorest when two processors

are continuously contending and PH = 2PL-1. In this case.the two jobs

obtain alternate accesses even though their ratio of priorities is much

closer to 2 to 1 than to 1 to 1. However, this is not as bad as it

may at first appear since in a real situation neither of the processors

would be expected to be contending at every access period. From the

discussion of Chapter III concerning two contending processors and

memory module bandwidth equal to the sum of the mean bandwidth require-

ments of the two jobs being executed by the two processors and each of

equal bandwidth requirements the probability of contention at time

t+i, provided contention occurred at t, t+l, . . . t+i-l, is of the

form (1/2)1. Thus, the probability of continuous contention of length 1

is twice that of length 2, four times that of length 3, etc.



92

On the other hand the problem in the special case of two

processors could be alleviated somewhat by adding only a fraction of

the priority to the access right word of the processor not obtaining

the access when the priorities are of certain ratios. However, this

represents further complication to the overall mechanism with attendant

potential for slowdown of the system. Therefore it will not be

considered any further in this paper.

The results of a statistical analysis of the length before the

lowest priority job obtains its first access and the length between

the first and second access is shown in Fig. 5-6 through Fig. 5-17

for 2, 3, 5, 10, 13 and 16 processors with priorities ranging from

1 through 255. The frequency-grams of these figures were plotted for

1000 samples each from a uniformly distributed random variable. The

values were normalized about the integer ratio of the sum of the

priorities to the lowest priority. From these frequency-grams it may

be observed that the expected mean length before the lowest priority

job obtains its first access is related to the number of contending

processors as well as the normalizing factor NF = Pi/P]. The

length between the first and second access by the lowest priority job

is also related to the number of contending processors and the normal-

izing factor, but the frequency grams indicate that this length is

slightly less than that before the first access by the lowest priority

job. These two parameters give an indication of the type of service

that may be expected by a random selection of jobs being simultaneously



93

Mean = 0.0
1000

Std. Dev. = 0.0

Normalization Factor =

[Pi/PL
1

500

1000 samples

-.1 0 .1

Fig. 5-6 Frequency-Gram for length before lowest priority job
obtains first access for 2 processors.

1000 
Mean = 0.0

Std. Dev. = 0.0

Normalization Factor =

[.Pi/PL
1

500

1000 samples

-. 1 0 .1

Fig. 5-7 Frequency-Gram for length between ist and 2nd access by
lowest priority job, 2 processors.



94

450

Mean = -.05160

Std. Dev. = .14976

300 Normalization Factor =

[ EPi/PL

1000 samples

150

0 I I
-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-8 Frequency-Gram for length before lowest priority job
obtains first access for 3 processors

450

Mean = -.08287

Std. Dev. = .13123
300

Normalization Factor =
[ZPi/PL

150 1000 samples

-. 5 .4 -. 3 -.2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-9 Frequency-Gram for length between ist and 2nd access by
lowest priority job, 3 processors.



95

225

Mean = -. 08038

Std. Dev. = .13137
150

Normalization Factor
[EP./PL
i i

1000 samples
75

0-

5 -. 4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5
Fig. 5-10 Frequency-Gram for length before lowest priority job

obtains first access for 5 processors

225.

Mean = -.11193

150 Std. Dev. = .12010

Normalization Factor

E[Pi/PL

1000 samples

-.1 -.2 -.3 -.4 -.5 0 .1 .2 .3 .4 .5

Fig. 5-11 Frequency-Gram for length between Ist and 2nd access
by lowest priority job, 5 processors.



96

150

Mean = -. 10484
100

'Std. Dev. = .09540

Normalization Factor =
[EPi/P L ]
i

50
1000 samples

-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-12 Frequency -Gram for length before lowest priority job
obtains first access for 10 processors

150

Mean = -.12068

100 Std. Dev. = .09153

Normalization Factor =
[EPi/P

L]

50 1000 samples

-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-13 Frequency-Gram for length between ist and 2nd access by
lowest priority job, 10 processors.



97

150

Mean = -.11161

Std. Dev. = .08348

Normalization Factor =

100 [ EPi/PL1

1000 samples

50

0

-. 5 -. 4 -. 3 -. 2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-14 Frequency-Gram for length before lowest priority job
obtains first access for 13 processors

Mean = -.11891

Std. Dev. = .07703

Normalization Factor =

[ZPi/PL]

1000 samples

-.5 -. 4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5

Fig. 5-15 Frequency-Gram for length between 1st and 2nd access
by lowest priority job, 13 processors.



98

150

Mean =-.10746

100 Std. Dev. = .07585.

Normalization Factor =

[{Pi/PL

-. 5 -. 4 -. 3 -. 2 -. 1 0 .1 .2 .3 .4 .5
Fig. 5-16 Frequency-Gram for length before lowest priority job

obtains first access for 16 processors.

150

Mean =-.11718

Std. Dev. = .06979
100

Normalization Factor =

[zPi/PL

1000 samples

50

-.5 -.4 -.3 -.2 -. 1 0 .1 .2 .3 .4 .5

Fig. 5-17 Frequency-Gram for length between ist and 2nd access by
lowest priority job, 16 processors.



99

executed from a single memory module. The lower priority jobs will

tend to obtain accesses at higher rates than their relative priority

dictates while the higher priority Jobs will tend to receive accesses

at rates that are slightly less than their relative priority indicates

that they should. This is the expected outcome over the ensemble of

priorities and number of contending processors but particular cases

may be contrary to this average trend as is indicated by the sequence

80 80 160 80 160 80 160

53 106 53 106 159 212 53 . . .

53 106 159 212 53 106 159

periodic length

Nevertheless, the graphs indicate that the mean length before first

access by the lowest priority job ranges from approximately -.052NF

with standard deviation of .150NF for three processors to approximately

-.107 NF with standard deviation of .076 NF for sixteen processors. The

mean and standard deviation for the length between the first and second

access by the lowest priority job ranges from approximately -.083 NF

and .131 NF for three processors to approximately -.117 NF and .070 NF

for sixteen processors. The priorities were always assumed to range

from 1 through 255. The two processor case is singular with mean equal

to NF and standard deviation of 0.0 since the normalizing factor NF

was taken to be the integer part of Pi/PL . The curves appear to
i

approach a normal distribution as the number of processors increase.



100

The results for the means and standard deviations are summarized in

Fig. 5-18 and Fig. 5-18A.

A block diagram of the multiprocessor system with the proposed

scheme for memory access conflict resolution included is shown in

Fig. 5-19. In the context of conflict resolution no explicit

distinction has been made between CPU's and IOP's. However, it may

be desirable to give the IOP's higher ranking than the CPU's as well

as weighting the priority words associated with jobs in the I/O

processing state higher than that of jobs in the CPU processing state

due to the critical nature of the timing required of input/output

transfers. Also, in this context, it appears that each IOP will require

a small dedicated buffer storage since the scheme does not guarantee

right of memory access to any particular processor at a particular

time. However, these requirements are not considered in this paper.

As shown in Fig. 5-19 associated with each processor is a memory module

address decoder which accepts as input an access request line labeled

A and the memory module address lines. If the number of memory modules

is a power of 2 and the log2M least significant digits of the address

word is taken as the module address then interleaved memory results,

but this is not considered to be the case at this point. Thus, we

assume that the [log2 (M)] high order bits of each address word is the

module address. From each of the N memory module address decoders is a

line to each of the M processor selectors. Therefore, each of the M

processor selectors has as input one line from each of the N address



101

.15

standard deviation

.10

.05

Length before first access by lowest priority

0 job.

X Length between first and second access by lowest use

priority job.

-.05

mean

-.10

-.15

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 5-18 Summary of Means and Standard Deviations normalized about

[Z Pi/PL] for Priority Driven Access Conflict Resolution Scheme.
1



102

1.0

mean

.8

.6

.4

.2
standard deviation

0
I I I I I I I I I

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 5-18A Service to highest priority job relative to that
of the lowest priority job under the priority
criterion.



MEMORY MODULE
PROCESSOR ADDRESS PROCESSOR P

# 1 DECODERS SELECTORS

M -- 01 1 O DUDRES MEMORY
A [# 1 C CzPRIORITY C MODULE

A - C MODULE

WORD # 1 E
M E DATA # 1• ' S

PROCESSOR O
#2 R

M t>= : # 2 -- 2WORD # N ADDRE EM
I [ MEMORY

A A T MOD E,A _ __ ----- ==--:;T MODULE0O

M 1 - PROCESSOR DATA # 2

D . SELECTOR . M

S#1 E *
o M •

PROCESSOR M .* 0
# N

N R-D
M #-Y MEMORY

A _1A -_ _ PROCESSOR MODULE
SELECTOR -- G DATA # M

D v#M A

T
I

5 
G

Fig. 5-19. Block Diagram of the Multiprocessor System with Conflict
Resolution Scheme Included.



104

decoders as well as p lines from each of the N priority words. There

is one processor selector associated with each of the memory modules

which selects at most one of the processors to be given an access

at each memory module cycle period. The output of the M processor

selectors control the gating between processors and memory modules.

Fig. 5-20 shows a memory module address decoder. Fig. 5-21 shows

the combinatorial portion of a processor selector. The access word

registers are capable of either adding the priority word at their

inputs to their present contents or loading the priority word at

their inputs at the times controlled by the memory module sequence

timing and interconnect controller. The N inputs from the memory

module address decoders control the gating of the contents of the

access right words into the maximum word detector and only those lines

corresponding to processors wanting an access from the memory

module associated with the processor selector under consideration

will be true. The maximum word detector compares the most significant

bit of all contending access words with the maximum size for this bit

position. If a particular word's most significant bit is not as large

as the largest then the output of the coincidence gate associated with

this word and bit position will be zero. Consequently, any words not

meeting the largeness test in their most significant bit position will

not be considered at the lower bit positions since the output of the

coincidence gates are also used as inputs to the input AND gates at

the next lower bit position. The same test is then applied to the



105

Xl A
X G1

Xm

-- C
C G2

GM

m = Log 2  FM]
A = access request line

Fig. 5-20. Memory Module Address Decoder.



FROM MEMORY
MO DULE
ADDRESS
D ECODERS FROMS._" FROM

-4- PRIORITY
WORD

ACCESS

WORD #1 LOAD

ADD

FROM

- 1 PRIORITY

WORD #2
ACCESS
WORD 2 EMORY MODULE SEQUENCE TIMING ALOAD

INTERCONNECT CONTROLLER

FROM r
2 N ... PRIORITY,

ACCESS

FROM PROCESSOR
TO PROCESSOR RANKING
RANKING CIRCUIT CIRCUIT

MEMORY MODULE SEQUENCE TIMING AND

INTERCONNECT CONTROLLER

TO PROCESSOR TO MEMORY GATING

Fig. 5-21. Processor Selector.



107

next most significant bit position of each contender that has passed

the largeness test at its preceeding more significant bit position.

Thus, the outputs from the AND gates going to the processor ranking

circuit will be true only for those words that were as large as

the largest and were contending.

The processor ranking circuit shown in Fig. 5-22 is used to

determine a winner in case of a tie from the processor selector. Its

inputs consist of the output of the processor selector for gating

through the priority word associated with those access words that

are as large as the largest. The processor ranking circuit works in

a manner identical to that of the max word selector except the outputs

are ordered according to processor number i.e. in case two or more

contending processor's priority words are equal then the one with

lowest number obtains the access provided its associated access right

word was equal to the largest access right word. The outputs of the

processor ranking circuit is used as inputs to the memory module

sequence timing and interconnect controller. The sequence timing

and interconnect controller provides timing signals that coordinate

the selection of the processor to obtain the next access and timing of

the various events associated with the operation of the memory module.

Fig. 5-23 shows the gating of the read/write line from each

processor to each memory module. The inputs to these circuits consist

of one line from each of the M module sequence timing and interconnect

controllers. Fig. 5-24 shows the logic gating for one bit of the data



0PRIORITY
o WORD # 2

PRIORITY
WORD # N

TO MEMORY MODULE SEQUENCE TIMING AND INTERCONNECT CONTROLLER

Fig. 5-22. Processor Ranking Circuit.



SRM, l

#-1
RM'1

FROM ALL
PROCESSOR
SELECTORS

P *
#2 RM2

FROM AIL
PROCESSOR E
SELECTORS P

R ('MM

p+M

FROM ALL
PROCESSOR
SELECTORS

Fig. 5-23. Processor to Memory Gating (Read/Write Lines).



R1R

P IMM
#1 + #1

+ Mj

* R 1 RM1 FROM R
FROM ALL 2 2 PROCESSOR

PROCESSOR * SELECTOR #1

SELECTORS N + M 2

P _j III 111 MM
#2M #2

R2+

R] - - [ ] - F R M 2

2 2RFROM R MROR
FROM ALL PROCESSOR M
PROCESSO M
SELECTORS SELECTOR #2 .

P Z Proces or t M i O i of Dt LMM
#rN + 11 RM #M

2

+ ' 11 RM MU

-EWRj 2 R(CESORM,M

FROM ALL RMr EETR#

PROCESSOR 1

SELECTIOR SM

Fig. 5-24. Processor to Memory Gating (One Bit of Data Lines).



lines between the processors and memory modules. In places where the

outputs of gates are connected together it is assumed that if one of

the gates tends to cause the output to be true and the other tends to

cause it to be false then the result is false. Fig. 5-25 shows the

gating of the address words from the processors to the memory modules.

The inputs to these circuits consist of one line from each of the

M sequence timing and control circuits. At most one of the M can be

true at a given access period.

Time Required to Resolve Access Conflict

Let us assume the following:

(1) At most 16 processors will be contending for accesses from

a single memory module.

(2) The largest priority word is 255.

From (1) and (2) the number of bits required for an access right word

is [0log 2 (16x255)] = 12. If it is assumed that the coincidence gates

of Fig. 5-21 are realized with three levels of gating then the ripple

time for the max word detector (combinational logic portion of the

processor selector) A is 5 x 12 + 1 = 61 gate delays. Similarly the

ripple time through the processor ranking circuit is 5 x 8 + 2 x 7 = 54

gate delays. Thus a total of 115 gate delays is required for resolution

of conflict. If we assume a gate delay of 5ns then the total time for

access conflict resolution is 575 ns. This amount of time is probably

too large for most high speed memory modules. The problem here is that

these circuits operate on a sequential bit by bit manner in selecting



112
FROM ALL

P PROCESSOR SELECTORS
R
0
C #  1  "M
E 1 + MM

2E 0

S M D #

RL L EllR LEE

EM OM
MD #

SR LSYE I

R*
0

c #
E 2
S
S -- Mo EO

PT, M D #
+ .- OUM

IR

S YE

L E

R
0
C#
E N

S
0 I U" PI 'l
R --- -

Fig. 5-25. Processor to Memory Gating (Address Lines).



113

the largest word. If the number of bits in the access right and

priority words were smaller then these circuits might be satisfactory.

Nevertheless, let us consider an alternate arrangement that makes the

selections in an essentially parallel manner. The number of gate

delays for the circuits shown in Fig. 5-26 and Fig. 5-27 is independent

of the number of bits in the access right or priority words. The

exactly 1 out of N and as large as largest circuits are shown in

Fig. 5-28. Under the assumption that the coincidence gates are

realized with three gate levels then the total number of gate delays

for the circuits of Fig. 5-26 and Fig. 5-27 is at most 17. If it is

assumed that the amount of time delay per gate is 5ns then these

circuits are capable of access conflict resolution in 85 ns.



FROM MSB OF FROM 2nd FROM MSB OF FROM LSB OF

ACCESS RIGHT WORDS ACCESS RIGHT WORDS ACCESS RIGHT WORDS

FROM
MODULE
DECODERS

EXACTLY 1 AS LARGE EXACTLY EXACTLY 1 AS LARGE
OUT OF N AS LARGEST 1 OUT OF N LARGEST 'OUT OF N AS LARGEST1 .. .. .. 0 1 ... *

STO

PROCESSOR
RANKING

FROM CIRCUIT

PROCESSOR
RANKING [ 4- I . . I +
CIRCUIT

MEMORY MODULE SEQUENCE TIMING AND
INTERCONNECT CONTROLLER

MAX WORD DETECTOR

Fig. 5-26 Alternate Processor Selector Circuit



From MSB of From 2 nd From MSB From LSB of
Priority Words of Priority Words Priority Words

From . . .
Max
Word
Detector

Exactly As Large ExactlAs Large Exact1 As La

To Max Word Detector

Output or Gates

Fig. 5-27. Alternate Processor Ranking Circuit.



x1 x2 xx

xl x2  xn

- - - n-
xlx 2x3  xn  Xlx 2x 3  xn  x 1x 2x 3

SI * . *- I 1 * . .1 I 1 - -

As Large As Largest

Exactly
1 out of N

Fig. 5-28. As Large As Largest and Exactly 1 Out of N Circuits.



VI. SOME PROBLEMS FOR THE SIMULATOR

Introductory Remarks

The true value of a simulation model such 'as is described in this

paper is not the ability to provide specific answers to specific ques-

tions but rather more often it is more useful in helping to formulate

the original questions in such a manner that meaningful answers may be

discovered. In other words, the simulation model helps to create an

awareness of the problems and then provide the questioner with enough

understanding of these problems such that answers to his questions about

the problems conveys useful information to him.

The model has a large number of parameters, both explicit and im-

plicit. Quite often, changing one of these parameters in a certain direc-

tion does influence the system in the direction that it intuitively

appears that it should, but frequently the magnitude of the result is

negligible in itself or of little consequence in light of a host of other

mitigating factors. Thus the model provides a means for discovering

which parameters are more significant under some set of assumed condi-

tions. For these reasons during the investigations which will be con-

ducted in this section of the paper, most of these parameters will be

set to values for which past experience in working with the simulation

model as it evolved indicates that they should be set in order to either

highlight the effects of changes in other parameters or to remove the

effects of parameters which have little real bearing on the particular

117



118

problem to be studied, but when taken along with a number of other para-

meters, that may be similarly classified in regards to the problem at

hand, tends to dilute the effects of the ones that are being studied.

This is also necessary in view of the large number of combinations of

values of parameters for which simulation runs would have to be made in

order to ascertain the true nature of a particular parameter of interest

under the diluted conditions.

It should be apparent that the simulation model is not designed

with the idea of obtaining precise results but nevertheless it is felt

that useful information can be obtained about a multiprocessor computer

of the form assumed in this paper through its use at a cost in time and

material that is far lower than through other means.

Since we will be concerned to a considerable extent in determining

system resource utilizations in this section let us define memory space,

memory bandwidth and processor utilizations in terms of the simulation

mode.

Memory Space Utilization - A block of memory space will be consid-

ered to be utilized 100% at a simulation step if it is assigned to

an active job either in a load condition or processing condition

during this step. Its utilization is considered to be zero at all

simulation steps at which it is not assigned to an active job. The

overall space utilization at a simulation step is then the ratio

of the amount of space assigned to active jobs to the total amount

of memory space. The mean space utilization over a number of simu-

lation steps in an interval T is then the arithmetic mean of step

utilizations in T.



119

Memory Bandwidth Utilization - Memory bandwidth utilization at a

simulation step is simply the ratio of the number of accesses

granted during this step to the total number available from the

entire memory. The mean utilization of memory bandwidth over an

interval T is the arithmetic mean of the.step utilizations during

this interval.

Processor Utilization - A processor will be considered to be

utilized 100% at a simulation step if it is not in an idle state

and it is granted as many memory accesses as it requests from the

memory. Thus processor utilization is actually the ratio of the

number of accesses granted to the number of accesses requested for

an active processor. Idle processors are considered to have a

utilization factor of zero. The overall utilization of processors

of a given type at a simulation step is then the ratio of the sum

of the utilization factors for all the processors of this type to

the total number of processors of this type in the system. The

mean utilization of processors of a particular type over an inter-

val T is then the arithmetic mean of the step utilizations in this

interval.

Although the model handles- jobs on an individual basis and prints

out statistics concerning service to each individual job these individual

statistics will not be presented in the problems to be considered due to

the bulk of material that would be required. Thus we will concentrate

on the overall responses to and characteristics of the total job set.

In the simulations which were performed in this section no prece-

dence relations were specified among the jobs in the input job sets,



120

each simulation run was made for 1300 steps, all jobs had an external

priority of one and the following system parameters were left set as

indicated:

ICECSZ(CESZ) = 40
ICON(CON) = 4000
INl(N1) = 20
IFECSZ(FECZ) = 40
IPCT(PCT) = 100 (scaled internally to 1.0)
IPI(Pl) = 27
IP2(P2) = 85
IQ1(Q1) = 15
IQ2(Q2) = 8
IQ3(Q3) = 3
IR(R) = 800
IS(S) = 0
ITA(TA) = 300 (scaled internally to 3.0)
MINBLK(MNBK) = 1024

MMST = 64
NI = 15

MMSPF(MSPF) = 16
MMAPF(MAPF) = 32
RP01 = 0.85
RP02 = 0.30
RP03 = 1.0
RP04 = 10.0
RP05 = 50.0
RP06 = 3.0
RP07 = 1.0
RP08 = 1.0
RP09 = 0.33333

RP11 = 0.0

Problems to be Studied

In this section five problems will be studied by means of the simu-

lator. These problems include the following:

(1) Memory fragmentation

(2) System resource utilization comparisons between the feedback
and nonfeedback scheduler/allocators.

(3) Aggregate system response to the input job set and frequency
of schedules as a function of total memory size.

(4) Relative comparisons of system response for various system
configurations and numbers of recurrent jobs.



121

(5) The impact of TMR jobs on the memory allocation problem.

Memory Fragmentation

In the absence of some automatic hardware mapping scheme (and an

elaborate memory protection device associated therewith) for mapping a

logically contiguous name space into a noncontiguous absolute address

space it is highly desirable to make memory allocations to each job from

a single addressably contiguous block of storage locations. Memory frag-

mentation is a condition whereby the available memory space becomes

separated into many small noncontiguous blocks. Thus memory fragmenta-

tion can, to a certian extent, thwart the ability to make allocations

from single addressably contiguous blocks, especially large allocations.

The simulation model coalesces blocks of storage as they are re-

leased with any addressably adjacent available blocks. Scheduling is

then done in small batches and as much of the available memory space as

possible is allocated to jobs in the schedule that require memory. This

method of ooeration has the advantage of choice for optimization over a

scheme that reallocates the memory space as soon as it becomes available

or as soon as there is a demand for it. If this latter option of immedi-

ate reallocation were adhered to then the system would try to become a

first-in first-served device. While first-in first-served devices are

esthetically appealing for queues involving people, they do not lend

themselves to optimization in the utilization of resources nor do they

necessarily ensure fastest service to individual jobs in a computer en-

viroment and can be atrocious in their appetite for system overhead.

For example, under a first-in first-served policy (policy but not in



122

fact realizable) the jobs in the system queue that are waiting for memory

space would tend to be from the population requiring the larger amounts

of space. Concomitantly the jobs releasing space would tend to be from

the population requiring the smaller amounts of space. Thus, quite often,

following release of space the system would search through the entire

list of jobs that were waiting for memory without finding one that

would fit into the released space. Therefore all three of the evils

mentioned above are realized.

It has been suggested [28] that the memory fragmentation problem

is tolerable under .conditions similar to those described here for the

simulation model, however, no quantative figures are available. There-

fore the simulator will be used to ascertain the amount of memory frag-

mentation. Since in this regard we are more interested in the average

utilization of memory space when there is great demand for it let us ad-

just the input demands on the system's memory space such that it remains

high at all times and observe the total amount of available storage space

immediately before and after each new schedule. This may be done for

several different average request sizes and dispersions relative to that

of the total memory space. Actually a number of cases were observed con-

cerning the fragmentation problem but the following two cases are typi-

cal.

Case 1

Total number of recurrent jobs in the system = 40

Each job's memory space size from a uniform random distribution

between 4 and 32

Actual average request size = 21.7



123

The data shown in Fig. 6-1 was then obtained from five simulation runs

with total space of 128, 192, 256, 320, and 384. A plot of this data is

shown in Fig. 6-2.

Case 2

* Total number of recurrent jobs in the system = 40.

Total memory size fixed at 256

• Job space size varying from job to job

The data shown in Fig. 6-3 was then obtained from four simulation runs

with job space size varying in the ranges of 12-24, 8-32, 4-64 and

1-128. A plot of this data is shown in Fig. 6-4.

The data of Fig. 6-1 and the curve of Fig 6-2 indicates that the

portion of total space available immediately after schedules was almost

constant and less than .05 for all five of the total memory sizes.

From the data of Fig. 6-3 and the curve of Fig. 6-4 this same parameter

varied in the range from approximately .04 to .12. The larger portion

of total space available in the second case may be only partially

attributed to the relative demand for space. This demand is roughly

measured by the product of the average space requirement per job and

the average number of jobs waiting memory before each schedule. However,

the system's ability to make maximum utilization of the total memory

space is also controlled by the relationships between the space require-

ments of the jobs and the sizes of the available blocks of space as well

as whether or not the system is biased in favor of the smaller size jobs.

From the data of Fig. 6-3 it appears that the system was biased in favor

of the smaller size jobs, especially in the case of the largest require-

ments range.



124

Total memory space

128 192 256 320 382

No. of schedules 30 19 16 13 10

Av. no. of available 2.83 3.58 4.56 4.92 5.60
blocks before schedule

Av. total available 52.77 101.10 139.12 180.54 224.2
space before schedule

Av. no. of jobs waiting 32.40 31.53 30.75 28.77 28.80
memory before schedule

Av. no. of available 2.55 2.94 3.38 3.70 4.10
blocks after schedule

Av. total space after 5.22 6.68 7.31 13.15 13.30
schedule

Av. no. of jobs 29.73 26.21 23.94 20.38 18.4
waiting memory
after schedule

Fig. 6-1 Tabulation of data concerning memory fragmentation--
Job space requirements from uniform distribution between
4 and 24 with mean = 21.7, varying total space.



125

A Portion of total jobs waiting memory
before schedule

B Portion of total jobs waiting memory
after schedule

C Portion of total space available
before schedule

D Portion of total space available
after schedule

1.0_

.9

.8

.7

.6

.5

.4C

.3-

.2

.1
D

0

I I I I I I ' I ' I ' I I

0 2 4 6 8 10 12 14 16 18

Total Space/Average Job Space

Fig. 6-2 A plot of data concerned with memory
fragmentation - Constant job space
requirements, varying total space.



126

MEMORY SPACE REQUIREMENTS RANGE

12-24 8-32 4-64 1-128

No. of schedules 69 74 64 28

Av. space requirement 19.33 22.15 38.75 80.38

Av. No. of available 4.0 3.57 2.83 1.79
blocks before schedule

Av. total available 115.80 100.74 95.17 116.43

space before schedule

Av. No. of jobs waiting 5.84 8.53 21.44 31.57
memory before schedule

Av. No. of available 3.55 3.23 2.47 1.46
blocks after schedule

Av. total space after schedule 26.60 30.25 24.60 9.68

Av. No. of jobs
waiting memory after 1.87 5.30 19.44 29.50
schedule

Fig. 6-3 Tabulation of data concerning memory fragmentation for
four space requirement ranges, total memory size = 256,
40 jobs



127

A - Portion of jobs waiting memory
before each new schedule.

B - Portion of jobs waiting memory
after each new schedule.

C - Portion of total space available
before new schedule.

D - Portion ot total space available
after new schedule.

1.0

.9

.8 A

.7
B

.6

.5

.4

.3

.2

.1 D

0
' I ' I ' I ' I ' I I I '

0 2 4 6 8 10 12 14

Total Space/Average Job Space

Fig. 6-4 A plot of data concerned with memory.
fragmentation - Varying job space
requirements, constant total space.



128

System Resource Utilization Comparisons Between the Feedback and Non-
feedback Scheduler/Allocators

As mentioned before in sections I and II the system may be con-

figured such that memory allocation and internal priorities of each job

are influenced by goodness of fit in both space and bandwidth between

requirements of jobs and an estimate of what is available from the main

memory at the time of memory allocation. In making these comparisons a

number of simplifications were made but the most notable ones were that

the numbers of input/output operations for each job were adjusted such

that these operations had a small influence on the overall system and

that the memory space for each job was entirely within a single memory

module. Four simulation runs each of 1300 simulation steps were then

made with the system configurations and job characteristics listed in

Fig. 6-5. The results of these runs are shown in Fig. 6-6. These results

warrant some discussion. First of all, it should be pointed out that the

nonfeedback configuration tends to be biased against jobs with large

bandwidth requirements since if priorities of a large bandwidth job and

a small bandwidth job are equal and- assuming large overall bandwidth

demands then the program executer will tend to grant memory accesses to

the low bandwidth job in accordance with the number that it requests.

Conversely, it will tend to grant memory accesses to the high bandwidth

job in accordance with the priority of the high bandwidth job relative to

that of other active jobs having space in the same memory module. Thus



129
Run Number

1 2 3 4

Number of CPUs 10 10 9 8

CPU Speed 1 1 1 1

Number of lOPs 12 12 12 12

IOP Speed 5 5 5 5

Number of Memory 10 5 3 2
Modules

Memory Module 16 16 16 8
Speed

Total Number of 40 40 40 40
recurrent jobs

Number of job sets 1 2 3 4

Job bandwidth Bm .ixBm,.9xBm  .IxBm,.3xBm, .1xBM,3/20xBm,
requirements .6xBm, 3xBm,9/2OxBm

Job space Sm 1/2xSm 1/3Sm 1/4xSm
requirements

All speeds are in numbers of basic clock periods per cycle
time of device.

Fig. 6-5 System configurations and job characteristics for comparisons
between feedback and nonfeedback scheduler/allocators.



130

Feedback Scheduler/Allocator

.Nonfeedback Scheduler/Allocator

1.0

Space

.8

Bandwidth

.6

CPU

.4

OP

.2

I I I I

1 2 3 4

No. of Jobs per Memory Module

Fig. 6-6 System resource utilization comparisons
between feedback and nonfeedback
scheduler/allocators.



131

with a fixed direct relationship between bandwidth requirements and total

number of accesses for job completion the low bandwidth jobs will tend

to run in a shorter length of time than the high bandwidth jobs. With

approximately equal populations of high and low bandwidth jobs the net

result is that the low bandwidth jobs are run with higher frequency than

the high bandwidth jobs, especially with large total demand on the sys-

tem. If a CPU is not idle during some period of time T and is granted

all the memory accesses that it requests during this interval T then we

must assume that its utilization is 100% during this interval. This

explains the higher utilization of CPUs during all four runs for the

nonfeedback configuration. The memory bandwidth utilization was higher

for the feedback configuration in all runs except run #1. In run #1

there was no real choice for bandwidth matching since all the jobs had

the same space and bandwidth requirements. The number of executions for

each job was not the same for the feedback and nonfeedback configurations

and since the jobs did not have the same processing shape curves a small

difference in bandwidth utilization can be expected during this run.

Memory bandwidth utilization is a rough measure of the total pro-

cessing done by the system if relative service to individual jobs can

be ignored and it is assumed that each program executed by the system

has been optimized for the particular system configuration. Alternately,

inefficiencies inherent in particular programs need not be considered

in relative comparisons between the feedback and nonfeedback versions

of the scheduler/allocator since these could theoretically be removed

in either case. Under these assumptions the feedback configuration appears

to have performed more work than the nonfeedback version.



132

Aggregate System Response to the Imput Job Set and Frequency of Schedule
as a Function of Total Memory Size

The total space in the main memory appears to have a considerable

influence on the response of the system to individual jobs as well as the

amount of overhead required to keep the system utilization at reasonably

high levels. The frequency at which new schedules must be initiated in

order to attempt to maintain some level of resource utilization is a

fairly good relative indicator of overhead associated with scheduling

jobs and allocating memory space. For the present problem three groups

of four sets of four simulation runs were made corresponding to a total

space that was roughly .1, .2, .4 and .8 times that required by all the

recurrent jobs in the system. The system's total memory bandwidth was

held constant at approximately .52 times the amount that would be de-

manded if all jobs were executed at their desired repetition rates. In

this manner the total demands on the system were maintained at a high

level throughout each run. In each set of runs four runs were made cor-

responding to 2, 4, 8, and 16 memory modules. Total memory speed and

space was held constant in each of the four runs of a set by adjustment

of module size and speed. This resulted in module speed being directly

related to size. This is of course contrary to what one would expect in

regard to maximum capability from real memory modules all of the same

technology but of different sizes. However, we may consider the largest

and fastest memory modules to be the highest quality and consequently

the highest cost. Then by substituting larger numbers of smaller and

slower modules we may observe the changes in the system's performance.



133

If at each simulation step each job's memory access requests are

distributed over its total memory space in a linear manner then in those

instances in which the mean job size is larger than the space of a memory

module the results are not valid. This is true because real computer

programs are far from random in regard to the sequence in which accesses

are made to locations of their memory space. In fact, the success of

virtual memory systems is predicated on the 'locality of reference' [25]

phenomenon of real computer programs. Thus if the contingencies men-

tioned above actually held then the speed at which a processor could

obtain accesses from a single memory module would be an upper bound on

the speed of execution of a particular program. This problem could be

overcome somewhat by interleaving the memory to a depth such that the

space spanned by each interleaved set of modules is greater than the

mean job space requirement. In the present problem for those cases in

which the mean job size is actually larger than module size runs will be

made for both random and sequential distributions of access requests so

that comparisons may be made.

For the first group of four sets of four runs each, the bandwidth

requirements were matched to the amount of bandwidth available from the

memory space occupied by the average size job. By holding total avail-

able memory bandwidth fixed and increasing total memory space, the amount

of bandwidth that is available to a job of a fixed size tends to decrease

directly with total memory size. Thus by adjusting the bandwidth require-

ments of each job inversely in relation to total memory size the amount

of bandwidth that is available to a job of the mean size should remain

fairly well matched over all total memory sizes. In this manner we may



134

remove the effects of bandwidth availability to individual jobs on CPU

utilization. Thus CPU utilization becomes an adjusted indicator of sys-

tem thruput and we are able to observe the effects of space alone on

this indicator. With more space more jobs may be in the memory at the

same time and CPU utilization should increase as space increases to some

point at which the number of jobs in the memory is somewhat larger than

the number of CPUs. With a total memory size of sixty-four and a mean

job size of sixteen the system may on the average have four jobs either

being loaded or in execution. At a total memory size of 512 this average

number is increased to thirty-two. However with the number of-CPUs fixed

at eight and the number of IOP's at sixteen we should expect to see CPU

utilization to range from something less than one-half to close to unity

depending upon how high the system tries to maintain CPU utilization

through rescheduling.

For this problem we will assume that the total IOP load is light

at all times. The result of all this is that the factor determining

sytem thruput, as reflected in CPU utilization, should pass from a low

value at the smaller memory size in which the CPUs can be utilized only

lightly due to an insufficient number of jobs in the memory to an asymp-

totic high value in which more jobs- are in the memory than the fixed

number of CPUs can adequately service. The system configurations and job

characteristics for the present problem are shown in Fig. 6-7. The

results for the first group of runs in which job bandwidth requirements

were matched to that available from the space occupied by the mean size

job is shown in Fig. 6-8 through Fig. 6-13.



135

For the second group of runs the bandwidth requirements were held

fixed at the value that was used for the smallest memory size in the

first group of runs. The results for this group of runs are shown in

Fig. 6-14 through Fig. 6-18. In the third group of runs the bandwidth

requirements were allowed to vary from job to job over the range from

.06 times the memory's total bandwidth to .25 times the memory's total

bandwidth. The results for this group of runs is shown in Fig. 6-19

through Fig. 6-24. In Fig. 6-8 the CPU utilization curve has the ex-

pected shape. It indicates that a total memory size in the range of

256 is adequate for the assumed number of CPUs and mean job sizes. Com-

parisons between Fig. 6-9 and Fig. 6-15 show that the lowering of band-

width requirements directly with total memory size had a considerable

influence on the steepness of the slope of the bandwidth utilization

curves of Fig. 6-9 but had little effect on the space utilization curves.

The downward slope of CPU, memory bandwidth and job completions between

memory sizes of 256 and 512 in Fig. 6-14, Fig. 6-15, and Fig. 6-16 was

caused by localized bandwidth limiting due to packing of a disportionate

number of jobs into one end of the memory. The effects of this phenome-

non are greater for larger numbers of smaller memory modules as is indi-

cated by these curves. The relatively large amount of space available

immediately after schedules in Fig. 6-17 for the largest total memory

size is due to the smallness of space demand relative to the amount that

is available and is not a true indicator of the fragmentation problem.

Sequential distribution of access requests, as indicated by the dashed

lines, resulted in general in lower utilization of system resources.



136

(Number of Modules, Module Speed)

Total Memory
Size (2,8) (4,16) (8,32) (16,64)

512 A 1/16 1/8 1/4 1/2
MIX .568 .568 .568 .568

256 A 1/8 1/4 1/2 1
MIX .785 .785 .785 .785

128 A 1/4 1/2 1 2
MIX .915 .915 .915 .915

64 A 1/2 1 2 4
MIX .980 .980 .980 .980

Module speed is in basic clock periods per module cycle period.

A is the bandwidth requirement of each job expressed in units of the
bandwidth of a memory module, Bm .

MIX 4s-the fraction of short instructions for each job. In these runs
a short instruction requires eight CPU cycle periods and a long instruc-
tion requires 256 CPU cycle periods.

Number of CPUs = 8, Number of IOPs = 16
Number of recurrent jobs = 40
Job space range = 4-24, Mean = 16.3
Desired mean job interarrival period = 275
Mean number of memory accesses CPU = 7500

per execution: IOP = 2750.

Mean job bandwidth requirement:
Total

Group #1 - (Mean space requirement) x Memory
Total space bandwidth

(see above listing)

Group #2 - .25 x total memory bandwidth

Group #3 - varying over range .06 to .25 times
total memory bandwidth

Fig. 6-7 System response as a function of total memory size -
System configurations and job characteristics.



137

A a E 2 memory modules
B a F 4 memory modules
C a G 8 memory modules
D a H 16 memory modules

1.0

CPU

.8

/ Dashed lines indicate sequential
/ / distribution of access requests

o .4

S/ , /

I G

.2 / F IOP

E

0

64 128 256 512

Total memory size

Fig. 6-8 System response as a function of total
memory size with matched bandwidth
requirements - CPU and IOP utilizations.



138

A a E - 2 modules
B a F - 4 modules

1.0 C a G - 8 modules
D a H - 16 modules

space

.8_ A H

/ C

.6- 1 D

o
"H.4 /

4. /

.2

Dashed lines indicate sequential distribution
of access requests.

0

64 128 256 512
Total memory size

Fig. 6-9 System response as a function of total memory
size with matched bandwidth requirements -
Memory space and bandwidth utilizations.



139

A 2 modules
B 4 modules
C 8 modules
D 16 modules

1.0
Dashed lines indicate sequential
distribution of access requests.

6 D

S.8

4. .6

0

U

S.4

o
0

64 128 256 512
Total memory size

Fig. 6-10 System response as a function of total memory
size with matched bandwidth requirements - Job
completions.



140

A a E 2 mods
B a F 4 mods
C ~ G 8 mods

toD a H 16 mods

S1.0

A Late
o D

0

C

4J

CO

0

'-4-

.4- Dashed lines indicate sequential
distribution of access requests.

S---- H
0

Early

G F

0 E
I I I I

64 128 256 512
Total memory size

Fig. 6-11 System response as a function of total memory
size with matched bandwidth requirements -
Late and early jobs.



141

1.0 A a E 2 modules
B a F 4 modules
C a G 8 modules
D a H 16 modules

.8

Mean before schedules

S.6

SD

a A

.4
B

o " -

4 .2 Mean after schedules

. E
o F
o G

0

I I I I

0 64 128 256 512
Total Memory size

Fig. 6-12 System response as a function of total
memory size with matched bandwidth requirements -
Available space before and after schedules.



142

0.

4 1.0

\ Dashed lines indicate sequential
distribution of access requests.

U

S.8

,,

4 -

o - modules

- -

C4

64 128 256 512
Total memory size

Fig. 6-13 System response as a function of total memory
size with matched bandwidth requirements -
Frequency of schedules.



143

1.0 - A a E - 2 modules
B a F- 4 modules
C a G - 8 modules
D a G - 16 modules

.8

Dashed lines indicate sequential
distribution of access requests.

.6

B CSCPU D

4 .4

"E F G

.2

0

0 64 128 256 512
Total Memory size

Fig. 6-14 System response as a function of total memory
size with constant bandwidth requirements -
CPU and IOP utilizations.



144

Dashed lines indicate sequential

1.0 distribution of access requests.

Bandwidth

-- A

.8

/ D
/ space

.6

/ -E

0G H

.4

.2 A E - 2 modules
B a F - 4 modules
C a G - 8 modules
D a H - 16 modules

I I I I

0 64 128 256 512
Total memory size

Fig. 6-15 System response as a function of total memory
size with constant bandwidth requirements -
Memory space and bandwidth utilizations.



145

1.0

A

.8 C

/ . C

o -- -~/ca ..6

"1 . B - 4 modules

.4 C - 8 modules
4D - 16 modules

., .2 Dashed lines indicate sequential

distribution of access requests

0

0

O

0 1 I I I

0 64 128 256 512
Total memory size

Fig. 6-16 System response as a function of total memory
size with constant bandwidth requirements -
Job completions.



146

1.0 A a E - 2 modules
B a F - 4 modules

CaG - 8 modules

D a H - 16 modules

.8

Mean before schedules
.6

Ca

.4

0E
F G

0 2

0 .Mean after schedules
o

0

0 64 128 256 512

Total memory size

Fig. 6-17 System response as a function of total memory
size with constant bandwidth requirements -
Available space before and after schedules.



147

1.0_ A - 2 modules
B - 4 modules

C - 8 modules
D - 16 modules

.8_

\ Dashed lines indicate sequential

.6 distribution of access requests

Ca
o .B

.4

o-4-4

od

I I

M .2

0 64 128 256 512
Total memory size

0 64 128 256 512
Total memory size

Fig. 6-18 System response as a.function .of total memory
size with constant bandwidth requirements -
Frequency of schedules.



148

A a E 2 modules
B a F 4 modules
C a G 8 modules

1.0 D a H 16 modules

A

B

CPU

Dashed lines indicate sequential

.2 H

/

IOP

0

0 64 128 256 512

Total memory size

Fig. 6-19 System response as a function of total memory

size with widely dispersed bandwidth requirements-
CPU and IOP utilizations.CPU and IOP utilizations.



149

AaE - 2 modules
B a F - 4 modules

1.0 C a G - 8 modules
D a H - 16 modules

space

.8

.6 -MBW

.6

0o / /
S/

S .2
Dashed lines indicate sequential distribution
of access requests.

II I

0 64 128 256 512
Total memory size

Fig. 6-20 System response as a function of total memory
size with widely dispersed bandwidth requirements
memory space and bandwidth utilizations.



150

1.0

A - 2 modules
B - 4 modules
C - 8 modules
D - 16 modules

..8
'0
-4

.6

-" .6

0 6

w /

-/

o Dashed lines indicate sequential
distribution of access requests.

0 64 .128 256 512
Total memory size

Fig. 6-21 System response as a function of total memory
size with widely dispersed bandwidth requirements-
Job completions.



151

Dashed lines indicate sequential distribution

01.0_ of access requests

C Late

0

CU ,

o 0 D

o .6

A a E - 2 modules

BaF - 4 modules
C aG - 8 modules

o D a H - 16 modules

S.4
CO F

H

o

.2 E Early

0

I I I I

0 64 128 256 512

Total memory size

Fig. 6-22 System response as a function of total memory
size with widely dispersed bandwidth
requirements - Late and early jobs.



152

A aE - 2 modules
B a F - 4 modules

1.0- C a G - 8 modules
D aH - 16 modules

.8

,-4

-A

- Mean-before schedules

U .6

~-B

rZ

-4 .4

0 64 128 C256 512

0

0

0" .2
Mean after schedules

0

0 64 128 256 512
Total memory size

Fig. 6-23 System response as a function of total memory
size with widely dispersed bandwidth
requirements - Available space before and
after schedules



153

01.0 A - 2 modules
B - 4 modules

o C - 8 modules
D - 16 modules

-o

.8

S.6

distribution of access requests.

0

Fig. 6-24 System response as a function of total memory

schedules.

0

0 64 128 256 512
Total memory size

Fig. 6-24 System response as a function of total memory
size with widely dispersed bandwidth
requirements - Number of steps between
schedules.



154

Relative Comparisons of System Response for Various System Configurations
and Numbers of Recurrent Jobs

In this problem two sets of runs were made. In the first set of

runs the memory's bandwidth was adjusted to be approximately five and

one-half times that required by the job set based on the numbers of

jobs, desired interarrival times and total memory accesses. In the

second set of runs the memory's total bandwidth was adjusted to be

approximately seventy percent of desired total demand. Both sets of

runs were made with both feedback and nonfeedback scheduler/allocators

for the system configurations shown in Fig. 6-25. The results for these

sets of runs are shown in Fig. 6-26 through Fig. 6-35. From these figures

it is apparent that the feedback configuration tends to select the jobs

requiring larger amounts of space and bandwidth if relatively larger

amounts are available and jobs of smaller space and bandwidth require-

ments if relatively smaller amounts are available, i.e., it works approxi-

mately as it should. However, it tends to deviate considerably from the

dictates of external priority even under light demands. A certain amount

of this tendency is to be expected since maximizing resource utilization

is somewhat incompatible with response to individual job demands. Never-

theless the feedback configuration appears to have performed better than

the nonfeedback configuration in the limited bandwidth availability case.



155

Total memory size

32 64 128 192 256

Number of CPUs 1 2 4 6 8

Number of IOPs 2 4 8 12 16

Number of Memory Modules 2 4 8 12 16

Number of recurrent 5 10 20 30 40
jobs

Job completion demands 116 108 71 35 21

Mean total access demands 176.41 358.71 706.41 1102.24 1432.17
per step

Bandwidth large 1000 2000 4000 6000 8000
Availability
per step limited 125 250 500 750 1000

Job space requirements 4000 4000 4000 4000 4000
Range to to to to to

24000 24000 24000 24000 24000

Actual mean space 15.6 20.3 18.3 17.0 16.8
Requirement per job

Fig. 6-25 Relative comparisons of system response for various
system configurations and number of recurrent jobs -
System configurations and job characteristics.



156

CPU Utilization
1.0

FBK

NFBK

.6

.4

0

2

IOP Utilization

0

0 32 64 128 192 256
Total memory size

Fig. 6-26 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, large bandwidth availability -
Processor utilizations.



157

1.0 . Feedback

Nonfeedback

.8

Memory space utilization

.6

.4

-1

-Memory bandwidth utilization

I 1 I I

0 32 64 128 192 256
Total memory space

Fig. 6-27 Relative comparisons of system response for various
system configurations and number of recurrent jobs,
large bandwidth availability - Memory space and
bandwidth utilizations.



158

FBK

1.0 _ NFBK

Immediately before schedules

.6

CO .4
4.4

O

.2

Immediately after schedules

0
I II I I

0 32 64 128 192 256

Total memory size

Fig. 6-28 Relative comparisons of system response for

various system configurations and number of

recurrent jobs, large bandwidth availability -
Memory space availability.



159

Feedback

4 Nonfeedback
1.0

O .8

0
U

U .6-
0

o
*40

.2

, .4

0

S.2

0
o

0 32 64 128 192 256
Total memory size

Fig. 6-29 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, large bandwidth availability -
Job completions.



160

1.0 , FBK

. NFBK

a .6

ON

0

". " .4

cn

o

S .2
-W

00

0 32 64 128 192 256
Total memory size

Fig. 6-30 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, large bandwidth availability -
Number of steps between schedules.



161

1.0

CPU Utilization

.8

FBK
.6

$ NFBK

.4

S IOP Utilization

.2-

0
I I I I I

0 32 64 128 192 256
Total memory size

Fig. 6-31 Relative comparisons of system response for various

system configurations and number of recurrent jobs,
limited bandwidth availability - Processor utiliza-
tion.



162

1.0
* FBK

-' NFBK

.8

Memory space utilization

.6

Memory bandwidth utilization

.4

0

N

.2

0

0 32 64 128 192 256

Total memory size

Fig. 6-32 Relative comparisons of system response for
various system configurations and number of

recurrent jobs, limited bandwidth availability -
Memory space and bandwidth utilization.



163

1.0
. FBK

X NFBK

.8

SImmediately before schedules
S .6

CO

CO

4O

-4
C~ .4

0

o

4-J

o .2 Immediately after schedules

0

0 32 64 128 192 256
Total memory size

Fig. 6-33 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, limited bandwidth availability -
Memory space availability.



164

1.0
. FBK

K NFBK

a

8

4J

r

o .6

O

*)

2

0

04 0

0 32 64 128 192 256

Total memory size

Fig. 6-34 Relative comparisons of system response for

various system configurations and number of

recurrent jobs, limited bandwidth availability -
Job completions.



165

1.0
,FBK

S+NFBK
-4(U

.

,

cO
0

m

4 .4

oc

0 M .2

04.)

0 32 64 128 192 256

Total memory size

Fig. 6-35 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, limited bandwidth availability -
Simulat-ons steps between schedules.



166

The Impact of TMR.Jobs on the Memory Allocation Problem

One method for improvement of reliability is through triple modular

redundancy. [29], [30] The model does not assume that there is a fixed

configuration of the memory into three or more parallel segments into

which the three components of a TMR job are placed and executed in a

lock-step fashion. The model assumes a much more general situation in

that both TMR and SIMPLEX jobs may be in progress in the system simul-

taneously and that allocations of memory to TMR jobs can be made in

triplicate from any available memory blocks so long as the three corre-

sponding allocations to a job is made from three disjoint sets of memory

modules. This creates a number of problems in the allocation of memory

and assignment of processors to the TMR jobs. With factors of external

priority equal for both SIMPLEX and TMR jobs the TMR jobs are at a very

distinct disadvantage in being able to obtain all the resources that

they need, especially with a large overall demand and a limited amount

of resources.

For this problem three sets of runs were made. In the first set

all the jobs were TMR. In the second set approximately one-half of the

jobs were TMR and in the third set one-third of the jobs were TMR. The

total number of recurrent jobs was fixed at forty for all three sets of

runs. In each set of runs total memory size and bandwidth were fixed

but the numbers and speeds of memory modules were varied. In order to

keep space demands nearly constant the mean space requirement of jobs

was adjusted so that the run with the largest fraction of SIMPLEX jobs



167

had the largest mean job requirement for space. For all three sets of

runs the number of memory accesses required for job completion was adjust-

ed for a small value and bandwidth requirements were adjusted for a high

value in order to complete a larger number of jobs so that a large number

of allocations would be made.

The system configurations and job characteristics are listed in

Fig. 6-36. The results are shown in Fig. 6-37 through Fig. 6-42. These

figures indicate that the memory fragmentation problem tends to be

greater with larger percentages of TMR jobs. However, Fig. 6-42 indicates

that service to TMR jobs relative to that of SIMPLEX jobs tends to be

poorer for relatively smaller percentages of the numbers of TMR jobs in

the system.



168

ALL TMR TMR 1/3 TMR

Job space requirement 4-24 6-36 8-43
range

Mean job space 16.8 25.1 29.8
requirement

Actual number of TMR 40 22 14
jobs

Total space 2016 2108 2026
requirement

(Numbers of Modules, (3,6) (6,12), (9,18), (12,24), (15,30)
speeds of Modules)

Total memory size 360

Number of CPUs 10

Number of IOPs 15

Fig. 6-36 The impact of TMR jobs on the memory allocation
problem -- Job characteristics and system
configurations.



169

1.0
A a D all TMR jobs
B a E one-half TMR jobs
C a F one-third TMR jobs

.8

.6 A - CPU D - IOP

E- IOP ,B - CPU

F IOP

C - CPU

0
•, .2

N

I I I I I

0 (3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Module Speed), Module speed is in basic
clock periods per module cycle period.

Fig. 6-37 The impact of TMR jobs on the memory allocation
problem - Processor utilization.



170

1.0

A - MBW

8 B - MBW F - space E - space
.8

.6 C MBW D - space

.4
A caD - all TMR
B a E - one-half TMR

9o C a F - one-third TMR

.2

0I

(3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Module speed), Module speed is in basic
clock periods per module cycle period.

Fig. 6-38 The impace of TMR jobs on the memory allocation
problem - Memory space and bandwidth utilizations.



171

1.0

.8 A -all TMR
B - one-half TMR
C - one-third TMR

A

4,

BS .62

00

a)

(3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Module Speed), Module speed is in basic
clock periods per module cycle period.

Fig. 6-39 The impact of TMR jobs on the memory allocation
problem - Number of simulation steps between
schedules.

-o

0r

* 36 6l) (,8 1,4 1,0

(Nme fMdls Mdl pe) oul pe si ai
clc eid e odl yl eid

Fi.63 h mato N oso h eoyalcto
prbe ume fsmuainsep ewe
sceuls



172

1.0

one-third TMR

.8 -
one-half TMR

.6
CD

.0

,-4

0.2

0

(3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Module Speed), Module speed is in basic

clock periods per module cycle period.

Fig. 6-40 The impact of TMR jobs on the memory allocation

problem - Number of jobs completed.



173

1l.0
. AaD - All TMR
" B a E - one-half TMR

C a F - one-third TMR
o

.8

0

o

SA, B, C Before schedules

.6 A

--4

0

D, E, F After schedules

0D

O .2

0

0

(3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Mo'dule speed), Module speed is in
basic clock periods per module cycle period.

Fig. 6-41 The impact of TMR jobs on the memory allocation
problem - Available space immediately before
and after schedules.



174

1.0

0

S.8

0-"

0 1/2 TMR

O 

U

-r- O .4

o0 0

z Q)

. .2

0

I I I ,

(3,6) (6,12) (9,18) (12,24) (15,30)

(Number of Modules, Module Speed), Module speed is in
basic clock periods per module cycle period.

Fig. 6-42 The impact of TMR jobs on the memory allocation
problem - Relative numbers of completions for
TMR jobs.



VII. DISCUSSION AND CONCLUSIONS

A simulation model for a multiprocessor computer has been developed

in order to study a few of the myriad of interacting problems that are

associated with such systems. Of necessity, the model is a highly sim-

plified embodiment of one view of what are the important constituents

of such a system in regards to the types of problems to be investigated.

These problems were mainly concerned with the effects of the aggregate

characteristics of input job sets to the system on the output of the

system as well as the effects of interactions of hardware processors in

simultaneously using a common memory having limited space and bandwidth.

Although the model performs many of the system executive functions

of a real multiprocessor, the impact of executive or monitor type pro-

cessing does not show up explicitely in the simulation results since

this processing is done essentially between simulation steps. Instead,

the main thrust of this paper was directed at a stratum of problems lying

at least one level below somenebulous but ever present executive system.

Nevertheless, the problems actually investigated form a large part of the

basic enviroment within which an executive processing system must operate.

The basic underlying assumptions for the simulation model were pre-

sented in Chapter II and some typical problems suitable for investigation

by means of the model were presented in Chapter VI. Due to the granular

manner, in reference to time, in which the model simulates the execution

of programs the effects of access conflict, which occur when two or more

175



176.

processors attempt to simultaneously use a common memory module, do not

show up in the simulation results. Thus in Chapter III this problem was

studied by analytical means. This analysis employed a modified binomial

approach in which the sequential instruction by instruction execution of

computer programs, reflecting remembrance by processors of the last

memory access request not yet granted, and mean bandwidth requirements

were taken into account. The results of this analysis showed that when

the sum of the mean bandwidth requirements of all jobs being simulta-

neously executed from a common memory module is equal to the bandwidth

of the module, access conflict can cause an overall slow down ranging

from approximately seventeen percent with three processors to a slowly

decreasing value of approximately eleven percent for sixteen processors.

A multiprocessor is quite often viewed as a large and powerful com-

puting system in which several processors simultaneously share a common

memory. Thus this common memory and the interactions between hardware

processors in simultaneous use of the memory is of central importance in

such a system. Increases in efficiency of use of the memory of only a

small fraction can represeint a large amount of computing power. The

model attempts to increase the use of the memory's bandwidth by matching

individual job requirements for space and bandwidth with that available

from the memory at the time of allocation. Therefore in Chapter IV this

problem was studied in order to determine expected maximum gains that a

simple bandwidth matching shceme of the form assumed by the model could

obtain. This analysis indicated that the best that can be obtained over

a random placement scheme ranges from approximately twenty percent for

two jobs being simultaneously executed from a common memory module to



177

approximately six percent when twelve to sixteen jobs are simultaneously

executed from a common memory module under the assumptions that were

listed for space and bandwidth requirements in that section.

In Chapter V a processor to memory interconnection and conflict

resolution scheme was developed. Though not a perfect realization of

the stated objectives for such a scheme, the one developed in that sec-

tion is believed to be viable in a real priority driven multiprocessor.

It is also believed that this scheme may easily be modularized for reli-

ability enhancement purposes or expansion of an existing system.

In Chapter VI the simulations indicate that the memory fragmenta-

tion problem is not as severe as might at first be expected. Thus in a

real system relocation of programs so as to collect the small unusable

blocks into larger blocks of storage may not be necessary if the small

overhead associated with the fragmentation that was observed concerning

this problem is tolerable.

The simulations indicate that the feedback scheduler/allocator

scheme can increase memory bandwidth utilization by as much as ten to

fifteen percent over a nonfeedback scheme under conditions for which

real choices actually exist for bandwidth matching. Thus the values

determined in Chapter IV appear to be supported by the simulation re-

sults. The increased bandwidth utilization is quite often accompanied

by a distortion in relative service to individual job demands from that

specified by external priority. In situations in which no real choices

actually exist for bandwidth matching there appears to be no substantial

differences between the feedback and nonfeedback scheduler/allocators.



178

Memory interleaving would obviate the need for the feedback method

of bandwidth matching but interleaving of memory tends to destroy reli-

ability potential. Therefore interleaving was not considered in this

paper. It should be pointed out that the method of bandwidth matching

described in the model only assumed knowledge of an instruction mix para-

meter associated with each job. In this regard it should be contrasted

with other methods for bandwidth matching that have recently been de-

scribed by Covo [31] and by Kruzberg [32].

The simulations point out quite clearly that, aside from differ-

ences in cost and reliability, bigger and faster is better in regard to

memory modules. This is due to the fact that an individual job's peak

demands for bandwidth have a better chance for being fulfilled under

conditions of packing of jobs into one end of the memory. This packing

is desirable under generalized conditions in which job space require-

ments are widely dispersed and it is thereby essential to keep as much

of the total available space as possible in one contiguous block so

that the demands for large contiguous blocks of space have a high chance

for being met.

The memory fragmentation problem is worse for all TMR or a mixture

of TMR and SIMPLEX jobs than for the all SIMPLEX case but it does not

appear that it is three times as bad as for the all SIMPLEX case. Like-

wise, service to the TMR jobs in a mixed enviroment is considerably less

than to SIMPLEX jobs but the difference is not as great as the difference

between resource requirements. For example, in the simulation case in-

volving approximately equal numbers of TMR and SIMPLEX jobs the SIMPLEX



179

jobs received approximately 1.2/.8 = 1.5 times the service that the TMR

jobs obtained.

There seems to be few universal truths associated with a multipro-

cessor system but one observation that may come close to being one is

that a key factor in determining a successful multiprocessor system is

to provide a large enough memory so that enough jobs may be loaded into

the memory at one time such that system resources may be utilized at high

levels for relatively long periods of time between executive processing.

This observation is supported by the relationships between frequency of

schedules and totalmemory size in the simulations that were performed

in this paper.



LIST OF REFERENCES

[1] G. J. Burnett, 'Performance Analysis of Interleaved Memory Systems,'
Ph. D. Dissertation, Princeton University, 127 pp., University
Microfilms, High Wycomb, England, 1969.

[2] G. J. Burnett and E. G. Coffman, 'A Study of Interleaved Memory
Systems,' AFIPS, Spring Joint Computer Conference, 1970, pp. 467-
474.

[3] C. J. Conti, 'Concepts for Buffer Storage,' Computer Group News,
March, 1969, pp. 9-13.

[4] C. J. Conti, D. H. Gibson, and S. H. Pitkowsky, 'Structural Aspects
of the System 360 Model 85,' IBM Systems Journal, Vol. 7, No. 1,
1968.

[5] J. S. Liptay, 'Structural Aspects of the System 360 Model 85, II
The Cache,' IBM Systems Journal, Vol. 7, No. 1, pp. 15-21, 1968.

[6] J. S. Liptay, 'The Model 85 Buffer Storage,' IBM Systems Journal,
Vol. 7, No. 1, 1968.

[7] R. K. Richards, Electronic Digital Systems, John Wiley & Sons,
New York, 1966.

[8] A. L. Leiner, A. W. Notz, J. L. Smith, and A. Weinberger, 'Pilot,
A New Multiple Computer System,' Journal of the ACM, Vol. 6, No. 3,
pp. 313-335, 1959.

[9] H. S. Bright, 'A Philco Multiprocessing System,' AFIPS Proc. SJCC,
Vol. 26, pp. 97-141, 1964.

[10] A. J. Critchlow, 'Generalized Multiprocessing adn Multiprogramming
Systems,' AFIPS Proc. FJCC 1963, pp. 107-126.

[11] J. A. Campbell, 'A Note on an Optimal-Fit Method for Dynamic
Allocation of Storage,' The Computer Journal, Vol. 14, No. 1,
pp. 7-9.

[12] D. E. Knuth, The Art of Computer Programming Volume 2 / Semi-
numerical Algorithms, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1969.

180



181

[131 N. Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, M. I. T. Press, Cambridge, Massachusetts,
1949.

[14] W. Feller, An Introduction to Probability Theory and Its Appli-
cations, Vol. II, John Wiley & Sons, New York, 1971.

[15] H. Lorin, Parallelism in Hardware and Software: Real and Apparent
Concurrency, Prentice-Hall Inc., Englewood, New Jersey, 1972.

[16] T. C. Hu, 'Parallel Sequencing and Assembly Line Problems,' Opera-
tions Research, Vol. 9, November, 1961, pp. 841-848.

[17] C. V. Ramamoorthy, K. M. Chandy and M. J. Gonzales, Jr., 'Optimal
Scheduling Strategies in a Multiprocessor System,' IEEE Transactions
on Computers, Vol., C21, No. 2, February, 1972, pp. 137-146.

[18] C. V. Ramamoorthy and M. J. Gonzales, Jr., 'A Survey of Techniques
for Recognizing Parallel Processable Streams in Computer Programs,'
AFIPS Conference Proceedings FICC, 1969, pp. 1-15.

[19] R. R. Muntz and E. G. Coffman, Jr., 'Optimal Preemptive Scheduling
on Two-Processor Systems,' IEEE Transactions on Computers, Vol. C18,
No. 11, November, 1969, pp. 1014-1020.

[20] R. L. Graham, 'Bounds for Certain Multiprocessor Anomalies,' The
Bell System Technical Journal, November, 1966, pp. 1563-1581.

[21] G. K. Manacher, 'Production and Stabilization of Real-time Task
Schedules,' Journal of the Association for Computing Machinery,
Vol. 14, No. 3, July, 1967, pp. 439-465.

[22] M. Lehman, 'A Survey of Problems and Preliminary Results Concerning
Parallel Processing and Parallel Processors,' Proceedings of the
IEEE, Vol. 54, No. 12, December, 1966, pp. 1889-1901.

[23] A. J. Bernstein, 'Analysis of Programs for Parallel Processing,'
IEEE Transactions on Electronic Computers, Vol. EC-15, No. 5,
October, 1966, pp. 757-763.-

[24] B. Randall and C. J. Kuehner, 'Dynamic Storage Allocation Systems,'
Communications of the ACM, Vol. 11, No. 5, May, 1966, pp. 297-305.

[25] P. J. Denning, 'Resource Allocation in Multiprocess Computer
Systems,' Rept. MAC-TR-50, May, 1968, U. S. Gov't R & D Reports,
Vol. 68.

[26] L. A. Belady, 'A Study of Replacement Algorithms for a Virtual
Storage Computer,' IBM System Journal, Vol. 5, No. 2, 1966,
pp. 78-101.

'2



182

[27] E. W. Reigel, 'A Study of Parallelism in Computing Systems,'
Ph.D. Dissertation, University of Pennsylvania, 1969.

[28] B. Wald, 'Utilization of a Multiprocessor in Command and Control,'
Proceedings of the IEEE, Vol. 54, No. 12, December, 1966.

[29] R. E. Lyons and W. Vanderkulk, 'The Use of Triple-Modular
Redundancy to Improve Computer Reliability,' IBM Journal, Vol. 6,
No. 2, pp. 200-209, 1962.

[30] F. P. Mathur and A. Avizienis, 'Reliability Analysis and Archi-
tecture of a Hybrid-Redundant Digital System: Generalized Triple
Modular Redundancy with Self-Repair,' AFIPS Spring Joint Computer
Conference Proceedings, pp. 375-383, 1970.

[31] A. A. Covo, 'Analysis of Multiprocessor Control Organization
with Partial Program Memory Replication,' IEEE Transactions on
Computers, Vol. C-23, No. 2, February, 1974, pp. 113-120.

[32] J. M. Kruzberg, 'On the Memory Conflict Problem in Multiprocessor
Systems,' IEEE Transactions on Computers, Vol. C-23, No. 3,
March, 1974, pp. 286-293.



APPENDIX A

Command and Data Structures, Program
Descriptions and Bandwidth Adjustment

Command and Data Format

$$INIT$SYS
causes SETUP routine to be called. System parameters are entered
immediately after this card as follows:

XXX1 = yl
XXX2 = y2

XXXN = yN

Where XXXN is a 1 to 4 letter mnemonic symbol for the parameter
and yN is the value to be assigned to the parameter.

*END
signals the end of parameter initialization.

$ ENTR$DIST
causes STAT routine to be called; data must be entered immediately
after this card as follows:

NAME = XXXX
where XXXX is some 1 to 4 letter mnemonic to be assigned to the
first distribution curve.

DATA = DI, D2 , . . , D4 1 .
up to 41 data points may be entered. Data points must be separated
by either a blank or a comma and may be real or integer.

The above name and data pairs may be repeated for as many as a
total of 25 distributions.

$$EXIT DIST
signals the end of distribution curve entry processing.

$$ENTR$BST
causes BULK routine to be called. Data must be entered immediately
behind this card as follows:

183



184

NAME = *XXX1, XXX2, . . , XXX7
The asterisk denotes a periodic program, XXXN is a 1 to 4 letter
mnemonic
N = 1 indicates job name
N = 2 indicates processing shape curve name
N = 3 through 7 indicates predecessors.
All entries must be separated by commas.

$jEND$BLOC
signals the end of common statistics Job block.

SEED = N
seed value for a random number sequence.

FCTN = XXX1, XXX2, . . . , XXX9
Distribution curve names to be used in generating the job
characteristics data.

FMAX = Xl, X2, . . . , X9

Real or integer values which designate the maximum allowable
values for each parameter.

FMIN = Xl, X2, . . . , X9

Real or integer values which designate the minimum allowable
values for each parameter.

This card may be followed by more cards of the type between the
NAME card following the $ ENTR BST card and FMIN for a different
set of job characteristics.

$ EXITIBST
signals the end of bulk storage table processing.

$$ERAS MJDT
causes the arrays JOVF, JM2, MNAME and FLAG to be set to zero by
the CLEAR routine.

$'PRNTb=VMJDT
causes a print out of time and the information in the J-TABLE by
PRNT.

$$ENTR MJDT
causes the ENTR routine to be called. Names of jobs must be
entered immediately after this card as follows:

NAME = XXX1, XXX2, . . . , XXXN
where XXXM is the job name of each job to be entered into the
J-TABLE.



185

*END
signals the end of job entry processing.

$$XEQ SINL*N,
where I < N < 4, causes execution of simulation run. N is the
number of time options which the user wishes to specify. These
options are as follows:

STIM = Simulation start time. Default value = 0.0
FTIM = Simulation finish time. Default value = 10.0
DELT = Simulation time increment. Default value = 0.01
PDEL = Simulation print time increment. Default value = 0.5

If no values are to be specified then the L*N is omitted and the
default values will be used. The optimal values are entered as
follows:

PDEL=A
DELT=B
STIM=C
FTIM=D

The order of entry does not matter but there must be the same
number of options specified as the value of N.

$ STOP

This signals the end of the simulation.

Any data card whose first two punched characters are 'C*' is
considered to be a comments card and is not processed by the
simulator. These cards may be placed anywhere in the data deck
before the $ STOP card.

Data cards may be continued by placing an asterisk in card
column 80.

If other runs are to be made with some of the jobs already
generated then before the $ STOP card place the following
command and data cards:

$$INIT SYS

New Parameter Values

$$ERAS MJDT

$$ENTR$MJDT



186

jobs to be entered

*END

$ XEQ SDMNL*N

time parameters

$ STOP

Common Blocks

BLK 1

ELEMENTS:
IASK, IDSH, LIND(33), LINA(33), IBLK, IDLR, IEQL, IDIST, INAME,
IDATA, MJDT, IBST, IEXIT, IFLD

HOW USED:
Used in conjunction with inputting and outputting of error
messages or for control purposes. These elements do not enter
into any calculations.

WHERE USED:
Initialized in BLOCK DATA subroutine and used during job genera-
tion and by the group of programs referred to as the job
generator. These include MAIN, SETUP, RECHEK, ICARD, BULK,
STAT, PRNT, CLEAR, and ENTR.

BLK2

ELEMENTS:
IWRD(100), FLD(50)

HOW USED:

Used to input all data to MAIN and any other routines that call
ICARD. IWRD holds alphabetical data and FLD holds numerical
data.

WHERE USED:
Initialized by ICARD and used by MAIN, SETUP, ICARD, BULK, STAT,
AND ENTR.



187

BLK3

ELEMENTS:
IDIST(25), F(25,41), NDIST

HOW USED:
IDIST holds names of distributions whose data is contained in

F. F holds the data for the distribution curves. NDIST is the

number of distributions in F and may not exceed 25.

WHERE USED:
Used by any routine needing access to any of the distributions.

These include the following:
MAIN, BULK, PRNT, RECHEK, SHAPE, HLS, NORPRB, and PEX.

BLK4

ELEMENTS:
(NAME(75,8), DATA(75,9),NJOB)
NAME array is sometimes referred to as the bulk storage table.

It holds the following information about attributes of each

job
NAME(*, ) --periodic/aperiodic
NAME(*,2)--job name
NAME(*,3)--processing curve name
NAME(* ,4-8)--predecessors

DATA array holds basic numerical descriptive data for each job in

the following order:

EP--external priority

TMR/SIMPLEX--type job

CR--main memory space requirement

I-0--number of main memory accesses for I/O processing

NI--number of main memory accesses for CPU processing

MIX--proportion of short instructions

RR--repetition period(periodic jobs)

IAT--mean inter-arrival period(aperiodic jobs)

DVT--not used

NJOB contains the number of jobs in NAME array.



188

HOW USED:
Method of use is explained under each entry above

WHERE USED:
used by the following programs in the job generator group:
MAIN, BULK, RECHEK, CLEAR ENTER

BLK5

ELEMENT:
SET

HOW USED:
used to signal condition return codes from subroutine calls
in the job generator group.

WHERE USED:
MAIN, SETUP, BULK, STAT, PRNT, RECHEK, CLEAR ENTR

BLK6

ELEMENT:
MNAME(8,64)

HOW USED:
used to hold names of jobs that are in the J-Table (J(27,64)
in BLK7)

WHERE USED:
PRNT, RECHEK, CLEAR, and ENTR

BLK7

ELEMENT:

J(27,64) Aliases JM2(27,64), JM(27,64)

HOW USED:
Holds the description and current status of all jobs that are
to enter into the current run. The elements of this array are
used as follows:

J(1,N) 1-7 Job name (index in MNAME)
8-15 Index of lSt memory block in MALC for this job.

J(2,N) 1 st Predecessor

J(3,N) 2nd Predecessor

J(4,N) 3rd Predecessor



189

J(5,N) 4th Predecessor

J(6,N) 1-7 1st successor

8-14 2nd successor

J(7,N) 1-7 3rd successor

8-14 4 th successor

J(8,N) Time of last execution

J(9,N) Number of memory accesses required in CPU mode.

J(10,N) 1-7 Instruction mix

8-15 Internal priority

J(11,N) 1-10 Mean number of memory access requests per simu-
lation step while in CPU mode.

11-15 Processing shape curve

J(12,N) 1-10 Standard deviation for the number of access
requests at each simulation step while in the
CPU mode

11-15 External priority

J(13,N) 1-10 Mean number of memory access requests per simu-
lation step while in I/0 mode.

11-15 not used

J(14,N) Repetition period if periodic; mean interarrival time
if aperiodic

J(15,N) Number of memory accesses for I/0 operations not
including progtam loading.

J(16,N) Number of active simulation steps

J(17,N) 1-11 main memory space

12-15 most significant four bits of 3rd memory block
index in MALC.

J(18,N) completion count



190

J(19,N) 1-8 Index of 2nd memory block in MALC

9-12 Least significant four bits of index of 3rd
memory block in MALC

J(20,N) Estimated minimum processing time excluding load time

J(21,N) 1-10 Standard deviation for number of memory access
requests while in the 1/0 mode

11-15 not used

J(22,N) Field overflow indicators

Bit 1 Predecessors

Bit 2 successors

Bit 3 time of last execution completion

Bit 4 number of memory accesses in CPU mode

Bit 5 Repetition period

Bit 6 memory modules

Bit 7 main memory space

Bit 8 memory block index

Bit 9 completion count

Bit 10 target time

Bit 11 next I/O interrupt

Bits 12-15 not used

J(23,N) memory preference factor

J(24,N) address of first overflow block in overflow area

J(25,N) target time

J(26,N) next I/O interrupt point



191

J(27,N) Job Status

Bit 1 ready

Bit 2 initiated

Bit 3 waiting CPU

Bit 4 waiting IOP

Bit 5 waiting storage space

Bit 6 Holding CPU

Bit 7 Preempted of CPU

Bit 8 mode, 0=CPU, 1=IOP

Bit 9 periodic/aperiodic

Bit 10 resident in main memory

Bit 11 TMR/SIMPLEX, 1=TMR

Bit 12 waiting I/O completion

Bit 13 In Future Events Chain

Bit 14 In Load State

BLK8

ELEMENT:
ICLK alias TIME

HOW USED:
Holds the current simulation step number

WHERE USED:
MAIN, RECHEK, FEC, CEC, HLS, LLS, PEX, NFMAL, MAPREF, and MASGN.

BLK9

ELEMENT:
JOVF(32,32) Alias JOVFL(32,32)



192

HOW USED:
Holds overflow from fields of the J-TABLE entries

WHERE USED:
CLEAR, and OVFLMG

BLK10

ELEMENT:

FLAG(64)

HOW USED:
Used by RECHEK to determine whether or not a job entry in the
J-TABLE has been previously processed by ENTR Command

WHERE USED:
RECHEK and CLEAR

BLK11

ELEMENT:
RT IME

HOW USED:
A time variable used during print out of the J-TABLE.

WHERE USED:
MAIN, and PRINT

BLK12

ELEMENT:
PARM(35)(in MAIN, SETUP, and RECHEK) in other routines the
elements of PARM are referred to by the following names:
ICECSZ, ICON, IN1, IFECSZ, IPCT, IP1, IP2, IQ1, IQ2, IQ3, IR,
IS, ITA, MINBLK, MMCT, MMST, MTOTAL, NI, NIOS, NMODS, NPCL, NPCS,
NCPUS, IFEDBK, IRNI, IRN2, IRN3, IRN4, IRN5, IRN6, IRN7, IRN8,
IRN9, MMAPF, MMSPF.

HOW USED:
The integer parameters of the system are contained in this block,
thus they may be initialized from the input stream at the
beginning of a set of runs. Any parameter changes for succeed-
ing runs must be made from the input stream prior to that run.
The parameter maintains the value of its last specification.
The individual elements are used in the following manner.



193

ICECSZ--notifies all routines of the current size of the
current events array. Must be less than or equal to the
size specified (N) in a dimension statement for ICEC (*,N).

ICON--specifies the number of basic clock periods per simula-
tion step.

IN1--a constant used by LLS in comparison with number of I/O
accesses to be done at I/O interrupt to help determine
whether job can retain CPU.

IFECSZ--notifies all routines of the current size of the
future events array. Must be less than or equal to the size
specified (N) in a dimension statement for IFEC(N,*).

IPCT--no. of basic clock periods per CPU cycle period.

IP1--a constant used by CEC in comparison with external
priority of a newly arrived job to determine whether or
not a new schedule should be called for.

IP2--a constant used by LLS in comparison with job internal
priority at I/O interrupt points to help determine whether
or not job should retain its CPU(s).

IQ1--a constant used by CEC in comparison with number of
scheduled entries in the current events chain to determine
whether or not to call for a new schedule.

IQ2--a constant used by HLS and LLS in comparison with the
number of IOPs already assigned to load operations to
determine whether or not more jobs in the load state may
be started.

IQ3--a constant used by LLS in comparison with the number of
scheduled jobs in the current events chain to determine
whether or not a job may retain its CPU upon I/O interrupt
initiation.

IR--a constant used by CEC in comparison with the mean band-
width requirement of a completing job to determine whether
a new schedule should be called for.

IS--a command for writing out various arrays for debugging
purposes.
BIT#1=1 causes the non zero entries of the allocated and
available lists (MALC and MAVL) of main memory storage
blocks to be written out upon departing from the memory
allocation routines MAPREE or NFMAL.



194

BIT#2=1 causes PEX to write out the array NAA which
contains the current estimate of the available bandwidth
from each memory module and MAS which contains the amount
of available space in each memory module at each simulation
step.

BIT#3=1 causes MAIN to print the information contained in
the J-TABLE following completion of each run.

Other bits are presently unused.

ITA--holds memory access time x 100 in basic clock periods.

MINBLK--holds the smallest memory increment that may be
allocated to a job. Also used by CEC and HLS to determine
amount of time required to load a job.

MMCT--the number of basic clock periods required for one
memory module cycle.

MMST--a constant used by HLS in comparison with the amount of
space occupied by a nonresident job at completion time to
help determine whether or not a new schedule should be
called for.

MTOTAL--total memory size.

NI--a constant used by LLS to control the maximum number of
jobs that may be initiated.

NIOS--the number of IOPs in the system, must be less than or
equal to the maximum number specified (N) in a dimension
statement for the IOP status array IPROS(N).

NMOD--the number of memory modules in the system.

NPCL--the number of CPU cycle periods required for execution
of a long instruction.

NPCS--the number of CPU cycle periods required for execution
of a short instruction.

NCPUS--the number of CPUs in the system, must be less than or
equal to the maximum number specified (N) in a dimension
statement for the CPU status array ICPU(N).

IFEDBK--indicates which memory allocator is to be used for
current run. IFEDBK=1 indicates MAPREF is to be used.
IFEDBK=O indicates NFMAL is to be used.



195

IRN1--used by PEX as a seed for calculating a random number
sequence for determining the number of memory accesses to
request for each active job at each simulation step.

IRN2--used by HLS as a seed for calculating a random number
sequence to determine the mean of the number of memory
accesses to be made for each job during its processing
period.

IRN3--used by HLS in calculation of target times for aperiodic
jobs during the initial preprocessing phase and following
job completion.

IRN4-- not used

IRN5--used by PEX as the number of simulation periods over
which the available bandwidth of each memory module is
estimated.

IRN6--used by HLS in determining average memory access rate

while in I/0 mode and in determining minimum processing
time.

IRN7--represents speed of IOP's relative to that of CPUs.

IRN8--used by HLS to determine residency of jobs. Represents
cost of memory relative to cost of processor time.

IRN9--used by RECHEK in generating some of the characteristics
of each job in the J-TABLE.

MMAPF--used by MAPREF in calculating memory preference factor
based on space considerations.

MMSPF--used by MAPREF in calculating memory preference factor
based on space considerations.

WHERE USED:
MAIN, SETUP, RECHEK, CKCPU, CKIOS, FEC, CEC, HLS, LLS, PEX,
NFMAL, MAPREF, MASGN, and MEMRLS.

BLKl3

ELEMENTS:
RPAR(11) (in MAIN, and SETUP) in other routines the elements of
RPAR are referred to by the following names:
RP01, RP02, RP03, RP04, RP05, RP06, RP07, RP08, RP09, RPl0,
and RP11.

HOW USED:
The real parameters of the system are contained in this block
so they like the integer parameters may be initialized from



196

the input stream at the beginning of a set of runs. Any
parameter changes for succeeding runs must be made from the
input stream prior to that run. The parameter maintains the
value of its least specification. The individual elements
are used in the following manner:

RP01--used by MAIN in testing level of short term utilizations
for.triggering new schedules.

RP02--used by MAPREF to help prevent memory space lockout.

RP03--used by CEC as a weighting factor for external priority
in the internal priority equation.

RP04--used by CEC as a weighting factor on amount of time to
target time in internal priority equation.

RP05--used by CEC as a weighting factor on time in queue in
calculation of internal priority equation.

RPO6--used by HLS to determine the number of minimum processing
periods before target time that each should be transferred
from the Future Events Chain to the Current Events Array.
Also used by CEC in calculating internal priority.

RP07--used by HLS in determining residency for each job.

RP08--used by CEC and by HLS to determine what proportion of
each job's memory space is initialized at load time.

RP09--used by HLS to determine the deviation in memory access
requests while in CPU mode.

RP10--Access request distribution, 1.0 = random, 2.0 = sequential.

RPll--not used.

WHERE USED:
MAIN, SETUP, CEC, HLS, LLS, PEX, and MAPREF.

BLK14

ELEMENTS:
IFLAG(47), ITAG(46)

HOW USED:
IFLAG is used in determining whether or not the system parameters
have all been initialized. ITAG is used during pre-execution
printout to determine whether or not the variables were



197

initialized immediately before execution of a run or remain

at a previously defined value.

WHERE USED:
MAIN and SETUP

BLKl5

ELEMENT:
KNAE(46)

HOW USED:
Used in initializing the system parameters. Each element is a

1 to 4 letter mnemonic for each variable in BLK12 and BLK13.
The order in which the mnemonics are listed in BLK15 should
correspond to the order in which the full mnemonics are listed

in BLK12 and BLKl3.

WHERE USED:
MAIN and SETUP.

BLK16

ELEMENTS:
IBWCTR(24), ICEC(5,40), ICECS, ICPU(10), IPASS(20), IFECS,
IFEC(40,4), IPROS(16), ISAVE(3,3), IVALOV(10), MALC(265,5),
MALCS, MAS(24), MAVL(128,5), MAVLS, MODNM(24), MTPl(24),
NA(24), NAA(24), NAB, NAG, NAML(40), NBLK(128), NFB(3), NJWM,
NSCHED, NREQ(40,24), NTP(24), NTR(24), NUCA(24).

HOW USED:
IBWCTR--counters for the number of simulation steps since an

allocation or release of memory from each memory module.

ICEC--the current events array. Serves as the job queue for
the system. The information in each of the five entries of
each position of the ICEC array is as follows:

ICEC(l,N) = Internal priority of job occupying position N.
ICEC(2,N) = J-Table index of job occupying position N.

ICEC(3,N) = time of entry into the array.

ICEC(4,N) = An indicator of whether the job occupying position
N is currently active.

ICEC(5,N) = A pointer to the next entry of the Current Events
Chain.



198

ICECS--a pointer to the first entry of the Current Events
Chain.

ICPU--the status table for the system's CPUs.

IPASS--an array which holds the current status of the system.

IPASS(l)--the number of entries in the ICEC array.

IPASS(2)--the number of entries in the Current Events Chain.

IPASS(3)--the number active jobs in the system.

IPASS(4)--the number of IOPs that have been initiated.

IPASS(5)--the number of IOPs that are assigned to jobs in
the Load state.

IPASS(6)--the time at which the last schedule occurred.

IPASS(7).--the number of idle CPUs.

IPASS(8)--used by MAIN and FEC to pass the time of the next
event in the Future Events Chain to MAIN.

IPASS(9)--the number of free IOPs.

IPASS(10)--the amount of main memory space currently free.

IPASS(11)--the number of jobs scheduled and waiting for
storage space.

IPASS(12- 2 0)--not used.

IFECS--a pointer to the first entry of the Future Events Chain,
-1 indicates an empty chain.

IFEC--the Future Events array. The information contained in
each of the four positions of an entry of this array are as
follows:

IFEC(l,N) = Event time
IFEC(2,N) = type event
IFEC(3,N) = operand of event
IFEC(4,N) = pointer to next entry of chain.

IPROS--the current status table for the IOPs of the system.



199

ISAVE--used by MAPREF and NFMAL to hold information used in
making allocations of storage to TMR jobs.

IVALOV--used in passing information to and from the overflow
area for the J-TABLE.

MALC--the array used for the allocated storage list. The
information contained in each of the five entries of each
position of this array are as follows:

MALC(N,l) = pointer to next entry in the chain

MALC(N,2) = pointer to preceeding entry in the chain

MALC(N,3) = starting address for block described by this
position.

MALC(N,4) = pointer to next entry in the available list.

MALC(N,5) = length of block described by this position.

MALCS--pointer to first entry of the allocated chain.

MAS--holds the amount of available storage space in each memory
module.

MAVL--the array used for the available storage list.
The information contained in each of the five entries of each
position of this array are as follows:

MAVL(N,1) = pointer to next entry in the chain.

MAVL(N,2) = pointer to preceeding entry in the chain.

MAVL(N,3) = starting address for block described by this
position.

MAVL(N,4) = pointer to next entry in the allocated list.

MAVL(N,5) = length of block described by this position.

MAVLS--pointer to the first entry of the available chain.

MODNM--holds information concerning modules in which blocks of
storage are contained.

MTPl--holds total priority of all active jobs having storage
space in each of the memory modules that request more memory
accesses than their relative priority dictates that they may
obtain.



200

NA--holds the number of jobs having space in each memory module.

NAA--holds the current estimate of the available bandwidth of
the available space in each memory module.

NAB--the number of allocated blocks of storage.

NAG--used by PEX in granting accesses to memory to each active
job.

NAML--used by MAPREF for holding the list of jobs that are
waiting for memory. Also used by CEC in reordering the
Current Events Chain.

NBLK--used by MAPREF for holding the list of available blocks
of memory.

NFB--the number of free blocks of storage. Used by NFMAL.

NJWM--the number of jobs that are waiting for storage space.

NSCHED--used for calling for a new schedule.

NREQ--holds the number of memory access requests from each
active job to each memory module at each step of execution
processing by PEX.

NTP--used by PEX to hold the total priority of all the active
jobs having space in each memory module.

NTR--used by PEX to hold the total number of memory access
request to each memory module at each step of execution
processing.

NUCA--used by PEX to hold the sum of the differences in the
number of memory access dictated by relative priorities and
the number actually requested. Thus, the number of unclaimed
accesses.

WHERE USED:
MAIN, SETUP, CKCPU, CKIOS, LAST3, FEC CEC, HLS, LLS, PEX, NFMAL,
MAPREF, MASGN, and MEMRLS

BLK17

ELEMENTS:
ISTCNT, ISTAT(6,400), IUTL(6,200)



201

HOW USED:
ISTCNT holds the count of the number of entries made in the

ISTAT array during each run.

ISTAT holds the statistics for each completed job. Its entries
have the following meaning:

ISTAT(1,N) = job's index in J-TABLE

ISTAT(2,N) = time of entry into the Current Events Array

ISTAT(3,N) = time completed

ISTAT(4,N) = estimated minimum processing time

ISTAT(5,N) = target time

ISTAT(6,N) = actual number of active simulation steps for the
job.

IUTL holds the statistics for utilization of the system's
resources at selected step intervals. The entries hold the
following information:

IUTL(1,N)--time

IUTL(2,N)--CPU utilization

IUTL(3,N)--IOP utilization

IUTL(4,N)--memory bandwidth utilization

IUTL(5,N)--memory space utilization

IUTL(6,N)--mean job queue size.

WHERE USED:
MAIN, SETUP and PEX

BLK18

ELEMENTS:
RUTL(15) in setup, other routines refer to the individual
elements of this array by the following names:
AN, CUU, PUU, BWU, SPU, BCUU, BPUU, BBWU, BSPU, ACUU, APUU,
ABWU, ASPU, BQSIZ, AQSIZ



202

HOW USED:
AN is a time counter
CUU holds the CPU utilization for the past step
PUU holds the 1OP utilization for the past step
BWU holds the memory bandwidth utilization for the past step
SPU holds the memory space utilization for the past step
BCUU holds the short term CPU utilization
BPUU holds the short term memory bandwidth utilization
BSPU holds the short term memory space utilization
ACUU holds the long term CPU utilization
APUU holds the long term IOP utilization
ABWU holds the long term memory bandwidth utilization
ASPU holds the long term memory space utilization
BQSIZ holds the short term average job queue size
AQSIZ holds the long term average job queue size

WHERE USED:
MAIN, SETUP, and PEX.

A Brief Description of Each Routine

MAIN

This program interprets the commands and data arriving from the

input stream and in general directs the generation of the set of jobs

that the system is to execute during a set of simulation runs. It

also determines when to initiate new schedules during the course of

a simulation run, advances the simulation clock and prints out statis-

tics concerning utilization of system resources and service to individ-

ual jobs.

SETUP

The routine SETUP initiates the system parameters in common

blocks, BLK12 and BLKI3 as well as certain variables in common block

BLK16.



203

ICARD

The ICARD routine reads command and data cards one at a time

and checks for syntax errors on these cards. It has provisions for

handling continuation cards. It places each character that it reads

into the arrays IWRD and FLD.

BULK

This routine causes the job names and predecessors to be placed

in the NAME array. It then generates characteristics for the jobs in

the NAME array using random distributions residing in the F array and

the limit variables specified on the FMAX and FMIN cards for this set

of jobs.

STAT

The STAT routine causes information concerning probability

distributions and processing shape curves to be read into the F

array.

ENTR

The ENTR routine causes a specified selection of job names to

be entered into the MNAME array provided these job descriptions are in

the NAME array.

PRNT

The PRNT routine prints out the information from the J-TABLE

at selected intervals of time or upon command from some other routine.

CLEAR

The CLEAR routine sets all entries in the J-TABLE and overflow

area to zero upon command from the input stream.



204

RECHEK

The RECHEK routine transfers the data residing in the DATA and

NAME arrays that is associated with elements of the MNAME array into

the J-TABLE upon commands from the input stream.

UNMIX

The UNMIX routine separates any selection of consecutive bits

from a word. It is used in unpacking data.

PACK

The PACK routine is used to pack data into a single word.

RANDN

The RANDN routine is used to generate normally distributed random

number sequences.

RANDU

The RANDU routine is used to generate uniformly distributed

random number sequences.

SHAPE

The SHAPE routine is used to update the next interrupt point of

for each job by using the processing shape curves.

CKCPU

The CKCPU routine is used to'update the status of CPUs and to

search the CPU status table for idle CPUs.

CKIOS

The CKIOS routine is used to update the status of IOP and to

search the IOP status table for idle IOPs.

LAST3

LAST3 finds the lowest priority jobs with CPU(s) for preempting.



205

BITWRT

BITWRT is used by the PRINT routine for printing job status

words out in binary form.

FEC

The FEC routine manages the Future Events Chain. It moves events

into or out of this chain upon command from MAIN and HLS.

CEC

The CEC routine manages the Current Events Chain. It places

entries into this chain, removes entries from the chain and orders the

entries of the chain according to priority. It also calculates the

priorities of the entries in the chain and sets the load status bits

in the J-Table for new jobs entering the current events array that

are not presently loaded into the memory.

HLS

The HLS routine has three major functions as follows:

(1) HLS performs preprocessing on the set of jobs of a simulation

run at the beginning of the run. During this preprocessing it

determines the minimum processing time for each job, deter-

mines which jobs should be resident in the main memory based

on load times, mean iinterarrival times and relative costs of

IOP time and memory space. It also calculates an initial

target time for all jobs with no immediate predecessors.

(2) Following a new schedule HLS makes an initial assignment of

processors to each active job.



206

(3) Following job completion the HLS routine calculates a new

target time and determines whether the job goes into the

Current Events array, Future Events Chain or neither

depending on value of next target time, minimum processing

time and precedence relations. It also checks all imme-

diate successor jobs to see if all their other predecessors

have been run recently enough that theiroutput data is

still valid.

LLS

The LLS routine switches jobs under the following three condi-

tions:

(1) At I/O interrupt initiation

(2) At I/O interrupt completion

(3) At job completion

This routine will preempt jobs of lower priority of their CPUs and

reassign these CPUs to higher priority jobs. A considerable portion

of this routine is concerned with problems associated with the simul-

taneous execution of TMR and SIMPLEX jobs.

PEX

The PEX routine performs execution processing, keeps up with

the amount of processing done on each job, calls LLS at I/O interrupt

points, estimates the available bandwidth in each memory module and

tallies system utilization and processor time to individual jobs.



207

NORPRB

This routine calculates the probability that a sample from a

normal distribution with mean Vi and standard deviation 1al will exceed

a sample from a normal distribution with mean 12 and standard devia-

tion 02.

NFMAL

This routine is the nonfeedback memory allocator. It makes

allocations to jobs without knowledge of bandwidth requirements. It

uses the optimum-fit algorithm. Allocations to TMR jobs are made from

three disjoint sets of memory modules.

MAPREF

This routine is the feedback memory allocator. It uses an

adaptation of the best fit algorithm. Memory assignments are made on

the basis of best fit in space and bandwidth, however a portion of

other priority factors such as time in queue may enter into the

selection in order to avoid memory lockout. This routine is influenced

to a considerable extent by the requirements for allocations to TMR

jobs.

MASGN

This routine is called by MAPREF and NFMAL for updating the lists

of available and allocated storage at each memory allocation. It also

helps to tally the amount of available space and bandwidth in each

memory module.



208

MEMRLS

This routine is called by HLS for updating the lists of available

and allocated storage each time it is desired to release a block of

storage.

OVFLMG

This routine manages the overflow area from the J-TABLE. It will

place, retrieve, or remove information from this area.

Adjusting the Mean Bandwidth Requirements

The model provides for adjustment of the mean bandwidth require-

ments from any number of subsets of jobs in the set of a run by means

of the mix parameter. Specifically the mean number of access requests

per simulation step for CPU processing is given by

MNARC = ICON/(ITA + IPCT * FMIX)

where FMIX = NPCS * INM + NPCL * (1 - INM)

ICON is the number of basic clock periods per simulation

step. ITA is the number of basic clock periods for memory

access, IPCT is the number of CPU cycle periods per basic

clock period, NPCS = number of CPU cycle periods per short

instruction, INM is the proportion of short instructions and

NPCL is the number of CPU cycles per long instruction.

Similarly the number of accesses available from each memory module per

simulation step is ICON/MMCT. Thus let A represent the ratio of mean

bandwidth requirement per job to that of the bandwidth available from a

memory module. We then have



209

MNARC A * ICON/MCT

ICON/(ITA + IPCT * FMIX) = A * ICON/MCT

Rearranging we obtain

M CT/A I- TA - IPCT * NPCL
IPCT .* (NPCS - NPCL)

where 0 < INM < 1

For a given set of values for ITA, IPCT, NPCS, NPCL and MMCT (chosen

for the particular run) there are bounds on the value of A. Specif-

ically as INM ranges from 0 to 1 A ranges from MMCT/(ITA + IPCT * NPCL)

to MMCT/(ITA + IPCT * NPCS).



APPENDIX B

Program Flow Charts

NOTE: In these charts the symbol

has been used as the decision element
in place of the usual symbol

to reduce the amount of paper required.

210



211

MAIN START

SET THE ILAG ARRAY.

SET DEFAULT TIME PARAMETERS; PREDEFINE
TIME AND RTIME.

CALL ICARD TO GET AN INSTRUCTION FROM
THE INPUT STREAM AND PLACE IN IWRD.

SET THE TRANSFER FLAG 'SET' TO 3.

IS THE INSTRUCTION A COMMAND NO
SYMB IN IWRD 1)?

IWRD (2) = IENTR? NO

CALL STAT, BULK, OR ENTR IF IWRD(3)EQUALS
IDST, IBST. OR MJDT RESPECTIVELY,

-2 WHAT IS THE VALUE OF SET?
=1 =3 L

WRITE AN ERROR MESSAGE 'IMPROPERLY FORMATTED
UNDEFINED OR MISSING COMMAND OR DATA CARD'

STOP

DOES COMMAND CALL FOR ERASING J-TABLE?

CALL CLEAR

DOES COMMAND CALL FOR PRINTING J-TABLE>

CALL PRNT

FIS COMMAND FOR EXECUTION OF SIMULATION

5 --- " , Y----, y
IS COMMAND A STOP COMMAND?

Fig. B-1 MAIN PROGRAM (sheet 1 of 3)



212

NOZ ARE ALL SYSTEM PARAMETERS PROPERLY DEFINED?

PRINT AN ERROR ARE ANY TIME OPTIONS N

MESSAGE SPECIFIED FOR THIS RUN?

NO ,ARE ALL THE TIME OPTIONS
VALID?

PRINT AN ERROR

MESSAGE
FIND THE INDEX OF THE GAUSSIAN

DISTRIBUTION AND PLACE IN IDXGAU

CALL HLS FOR THE INITIAL

J-TABLE SCAN.

YES IS THE MEMORY BANDWIDTH
FEEDBACK SCHEDULER/ALLOCATOR
BETNG USED? /

CALL MAPREF FOR MEMORY
PREF. FACTOR CALC. CALL CEC FOR A NEW

AND MEMORY ASGNMT. SCHEDULE UNDER NFBK.

CAIL CEC FOR A NEW SCHED-, CALL NFMAL FOR ALCTN. OF
ULE UNDER FEEDBACK. i MEMORY TO SCHEDULED JOBS.

CALL HLS FOR INITIAL . CALL HLS FOR INITIAL

PROCESSOR ASGNMT. PROCESSOR ASGNMT.

Fig. B-1 MAIN PROGRAM (sheet 2 of 3)



213

030 100

ARE THERE ANY ACTIVE JOBS IN THEO
CURRENT EVENTS CHAIN

NO

YES <IS NCNT > 0? >

NCNT = 0 ARE THERE ANY JOBS
\IN THE ICEC CHAIN?

CALL FEC TO FIND OUT IF THERE ARE ANY JOBS
IN THE FUTURE EVENTS CHAIN AND IF SO FIND
OUT WHAT THE EARLIEST EVENT TIME IS?

IS IFEC EMPTY? 100
NO

ADVANCE THE SIMULATION CLOCK TIME TO THE
EVENT TIME OF THE LEADING EVENT IN THE IFEC

CALL FEC TO REMOVE ALL ENTRIES WHOSE EVENT
TIME IS < THE PRESENT TIME.

CALL PEX FOR ONE STEP OF JOB EXECUTION.

ADVANCE THE SIMULATION CLOCK BY ONE.

ES S THE SIMULATION CLOCK TIME GREATER THAN NO
HE FINISH TIME FOR THIS RUN?

WRITE THE PROCESSING ° CALL FEC FOR REMOVAL
STATISTICS FOR THIS RUN OF LEADING ENTRIES.

DETERMINE WHETHER OR NOT A NEW SCHEDULE
1 SHOULD BY INITIATED ON THE BASIS OF SYSTEM

STATUS AND PREVIOUS RESOURCE UTILIZATION.

S 2 IS A NEW SCHEDULE CALLED FOR?

NO

Fig. B-1 MAIN PROGRAM (sheet 3 of 3)



214

ICARD START

IWRD(*) = 0, FLD(*) = 0.0

SET THE WORD COUNTER (IW) TO 0.

SET THE FIELD COUNTER NF) TO 1.

SET THE CARD COLUMN COUNTER (IC) TO 0.

READ A CARD FROM THE INPUT STREAM UNDER A80
FORMAT INTO K. NOTE: UNDER A FORMAT CHARACTERS

ARE LEFT JIUSTIFIED.

PRINT THE CARD JUST READ.

IC = IC + 1

WAS THE CARD JUST READ A COMMENT CARD?

NO

IS THE CARD COLUMN COUNTER (IC) > 80?

SNO

DID COLUMN IC CONTAIN A ALPHABETICAL CHARACTER?
NO

DID COLUMN IC CONTAIN A NUMERICAL CHARACTER?

NO

DID COLUMN IC CONTAIN EITHER +, -, or .?
NO

A IS IC = 80? 8

YES
YES

IS THE PRESENT CARD CONTINUED?

Fig. B-2 ICARD subroutine (sheet 1 of 4)



215

PLACE THE CHARACTER IN K(IC) INTO THE MOST

A SIGNIFICANT BYTE OF IWRD(IW). PLACE BLANK
CHARACTERS IN THE OTHER BYTES OF IWRD(IW).

IL = 1 IT = 8.

YES

IS IC > 80? >

RETURN.

IWRD(IW) = IWRD(IW) + (K(IC)/256) * 256**( 4-

YES
IS IC = 80?

DID THE NEXT COLUMN CONAIN A RPECTAT.CHARA R
YES

IT = 5.

' YES
DOES IL = 4? 12

YES
< DOES IT = 5?

IC = IC + 1 , IL = IL + i.

FILL ANY REMAINING (4-IL) LESS SIGNIFICANT BYTES OF
IWRD(IW) WITH BLANK CHARACTERS.

MAKE A CORRECTION (-256**(4-IL)) TO THE CONTENTS OF
IWRD(IW) DUE TO THE FACT THAT THE FIRST ALPHABETICAL
CHARACTER PLACED IN THE MOST SIGNIFICANT BYTE OF
IWRD(IW) CAUSED OVERFLOW TNTO THE TN lTT

IW = IW + 1 I 5

Fig. B-2 ICARD subroutine (sheet 2 of 4)



216

MAKE A CORRECTION (-1) TO THE CONTENTS OF IWRD(IW)
12 DUE TO THE FACT THAT THE FIRST ALPHABETICAL

CHARACTER PLACED INTO THE MOST SIGNIFICANT BYTE
OF IWRD(IW) CAUSED OVERFLOW INTO THE SIGN BIT.

IW = IW + 1. 5 8

YES
IS IT = 5?

13 IC = IC + 1.

IS IW < 3? YES

r -NO
IS IWRD(IW-2) = IFLD?

IW = IW - 2.

IWRD(IW) = IFLD, IW = IW+1, NDGT = 0, IDEC = 0,
SIGN = 1.0, FCTR = 1.0.

IS THE CHARACTER IN K(IC) A MINUS SIGN?

YES

SIGN = -1.

IS THE CHARACTER IN K(I) A PLUS SIGN?
YES

IC = IC + 1. 19

15
B < ISIC > 80?

NO 4p

IS THE CHARACTER IN K(IC) A NUMERIAL?

FLD(NF) = FLD(NF)*10.0 + FLOAT(K(IC) + 4032)/256).

IC = IC + 1 < IS IC > 80? 0 NDGT=NDGT+1.

Fig. B-2 ICARD subroutine (sheet 3. of 4)



217

IS THE CHARACTER IN K(IC) A PERIOD?
NO

YES -
IS NDGT = 0?

S IS THE CHARACTER IN K(IC) A BLANK OR COMMA?
NO

HAS THE END OF THE PRESENT CARD BEEN REACHED
WITH A CONTINUATION SYMBOL IN THE LAST COLUMN?

PLACE AN ERROR INDICATOR *ERR INTO

IWRD(IW).

-- IS THE CONTINUATION SYMBOL (*) IN K(80)?

YES

READ THE NEXT CARD IN A80
FORMAT.

RETURN

YE' < IS IDEC > 0?

IC = IC + i, IDEC = IC.

15 IS IC > 80?
YES ,

< IS IDEC > 0? NO

F FCTR = 10.0 ** FLOAT(IC-IDEC)

FLD(NF) = SIGN* FLD(NF)/FCTR.
IWRD(IW) = IWRD(IW) + 1.

NF = NF + 1 IW = IW + 1.

Fig. B-2 ICARD subroutine (sheet 4 of 4)



218

BULK START

NJOB = 0 , IJOB = 1 , NAME (*,*) = 0.
W-

NJOB = NJOB + 1

CALL ICARD TO READ A CARD FROM THE INPUT

STREAM AND PLACE IN IWRD AND FLD.

WAS THE CARD JUST READ A COMMAND CARD
(SPECIAL CHARACTER IN IWRD(1))?

NO,' NO

WAS THE CARD JUST READ A PROPER NAME CARD

(IWRD(1) = 'NAME', IWRD(2) = '=')?
YES ,, NO

IS NJOB > 75? A

PRINT AN APPROPRIATE

WARNING MESSAGE.

I

WERE ALL THE JOB NAMES ON THE LAST CARD

PROPER NAMES (START WITH ALPHABETICAL
CHARACTER AND < 4 CHARACTERS LONG)?

YES

WERE MORE THAN 5 PREDECESSORS LISTED FOR
THE JOB NAMES ON THE LAST CARD?

ENTER THE NAMES FROM THE LAST CARD INTO

NAMES (NJOB, 3) THRU NAME (NJOB, 8).

WAS THERE A SYNTAX ERROR ON THE LAST CARD?

12 WAS THE LAST CARD A '$ END BLK' CARD?

NOSNO
WAS THE LAST CARD A '$ EXIT DIST' CARD?

JOB = NJOB-1 -- \ PRINT NAME ARRAY H-SET-- 2

Fig. B-3 BULK subroutine (sheet 1 of 3)



219

1 CALL ICARD TO READ THE NEXT CARD AND PLACE

IN IWRD AND FLD.

NJOB = NJOB - 1

N-< WAS THE LAST CARD A 'SEED' =' CARD?

YES

< AS THERE A SYNTAX ERROR ON THE LAST CARD?
NO

ISD = IFIX(FLD(1).

CALL ICARD

WAS THE LAST CARD A 'FCTN' CARD?

4 YES

WAS THERE A SYNTAX ERROR ON THE LAST CARD?
NO

WERE NINE DISTRIBUTIONS LISTED ON THE LAST CARD?

NO

LESS THAN NTNF LTEDTF) ON TAT CARD? /

S PRINT AN APPROPRIATE WARNING MESSAGE.

PLACE THE FIRST NINE ENTRIES FROM LAST CARD INTO IAP

CALL ICARD
NO

WAS THE LAST CARD AN 'FMAX' CARD?
YES

WAS THERE A SYNTAX ERROR ON THE LAST CARD?

WEE NINE VALUES LISTED ON THE AST CARD?

W7RE < NTNE VALUES LISTED ON THE LAST CARD?

NO NO

< ARE THE FIRST NINE VALUES LEGAL VALUES?

PLACE THE FIRST NINE VALUES FROM THE LAST

CARD INTO FMAX. ' B

Fig. B-3 BULK subroutine (sheet 2 of 3)



220

B CALL ICARD.

WAS THE LAST CARD AN 'FMIN' CARD?
YES

WAS THERE A SYNTAX ERROR ON THE LAST CARD?

NO
WERE NINE VALUES LISTED ON THE LAST CARD?

NO

WERE < NINE VALUES LISTED ON THE LAST CARD?

PRINT AN APPROPRIATE WARING MESSAGE. /

WERE THE FIRST NINE VALUES ON THE LAST CARD
LEGAL VALUES?

YES

PLACE THE FIRST NINE VALUES INTO FMIN.

PRINT AN APPROPRIATE
ERROR MESSAGE,

SI-I+1
SET =

IS I > 9?

NO RETURN
IS IAPX(1) IN IDIST?

YES
DETERMINE THE SCALE FACTOR FROM FMAX(1) AND
FMIN(I) FOR USE WITH DISTRIBUTION I.

GENERATE THE DATA FOR ALL JOBS IN THE NAME ARRAY WITH
INDEXES BETWEEN IJOB AND NJOB USING DISTRIBUTION I AND THE
SCALE FACTOR JUST CALCULATED AND PLACE IN THE POSITION OF
THE DATA ARRAY FROM IJOB TO NJOB.

PRINT THE STATISTICS FOR THE LAST JOB BLOCKf 3)

IJOB = NJOB + 1

Fig. B-3 BULK subroutine (sheet 3 of 3)



221

STAT START

SET ALL ENTRIES OF THE DISTRIBUTION NAME ARRAY (IDIST)
AND VALUE TABLE (F) TO 0 AND 0.0 RESPECTIVELY.

-i-_I2 NDIST 1.

IS NDIST > 25 ?

10 YES

PRINT A WARNING MESSAGE.

CALL ICARD TO READ A CARD, FROM THE INPUT STREAM AND
PLACE IN IWRD AND/OR FLD.

WAS THE CARD JUST READ A COMMAND CARD
(SPECIAL CHARACTER IN IWRD(1)) ?

NO

WAS THE CARD A PROPER NAME CARD IWRD(1
= 'NAME' AND IWRD(2) = '=')?

NO
RITE AN APPROPRIATE ERROR ESSAGE. /

SET = 4. RETURN.

IS IWRD (3) < 0 AND IWRD(4) = 0 ?

YES

I DIST(NDST =IW

CALL ICARD TO READ THE NEXT CARD FROM THE INPUT
STREAM AND PLACE IN IWRD AND FLD.

IS IWRD(1) = 'NAME' AND IWRD(2) = '' ?

YES

IS IWRD(3) = '*FLD' AND IWRD(4) '*ERR' ?

YES

Fig.B-4 STAT subroutine (sheet 1 of 2)



222

K = IWRD(4).

K : 41 ?

PRINT AN PPROPRIATE / PRINT AN APPROPRIATE
WARNING MESSAGE MWARNING MESSAGE S

- K = 41

PLACE THE ENTRIES OF FLD(I), I = 1 THROUGH K INTO
CORRESPONDING POSITIONS OF F(NDIST, I).

NDIST = NDIST + 1

WAS IT THE '$ EXIT IDST' CARD? - B

YES

N D I S T = N D I S T - 1.

CHECK THE IDIST ARRAY FOR MULTIPLE ENTRIES OF THE SAME NAME.
IF A NAME IS ENTERED MORE THAN ONCE THEN PRINT A WARNING MES-
SAGE, REMOVE ALL BUT THE FIRST ENTRY BY THAT NAME FROM THE
IDIST AND CORRESPONDING F ARRAYS AND RESTACK THE IDIST AND F
tARRAYS. DECREMENT NDIST BY THE NO. OF DUPLICATES REMOVED.

SET = 2.

RETURN.

Fig. B-4 STAT Subroutine (Sheet 2-of 2).



223

SETUP START B

ITAG(*) = A

CALL ICARD TO READ A CARD FROM THE INPUT STREAM
AND PLACE IN IWRD AND FLD.

WAS THE CARD READ BY ICARD AN END OF DATA CARD?

NO

WAS THE CARD A COMMAND CARD ($ IN IWRD(1))?

NO

SEARCH THE LIST OF SYSTEM PARAMETER NAMES (KNAME)
FOR A MATCH WITH IWRD(1).

NO

WAS A MATCH FOUND?
SYES

SET THE IFLAG AND ITAG ELEMENTS CORRESPONDING TO
THE SYSTEM PARAMETER DEFINED ON THE CARD JUSTREAD TO 1.

SET THE SYSTEM PARAMETER NAMED ON THE CARD JUST
READ BY ICARD TO THE VALUE SPECIFIED ON THE CARD.

WRITE AN APPROPRIATE ERROR MESSAGE AND SET
'SET' TO 4.

RETURN

Fig. B-5 SETUP subroutine (sheet 1 of 2)



224

MAKE THE FOLLOWING INITIALIZATIONS TO THE ELEMENTS

OF COMMON BLK16: MAS(*) = PARM(17)/PARM(20),
NAA(*) = PARM(2)/PARM(15), IPASS(7) = PARM(23),
IPASS(9) = PARM(19), IPASS(10) = PARM(17), ICECS = -1,
IFECS = -1, MAVLS = -1, MALCS = -1, MAVL(1, 1) = -1,
MAVL(1, 2) = -1, MAVL(1, 3) = 0, MAVL(1, 4) = -1,
MAVL(1, 5) = PARM(17), NFB(1) = 1. SET ALL OTHER
ELEMENTS OF COMMON BLK16 TO 0.

SET ALL ELEMENTS OF COMMON BLK13 TO 0.0.

IS THIS THE FIRST TIME THAT THE SYSTEM
PARAMETERS HAVE BEEN SPECIFIED FOR THE
PRESENT SEQUENCE OF SIMULATION RUNS

(LAST ELEMENT OF IFLAG = -1)?

YES

HAVE ALL SYSTEM PARAMETERS BEEN SPECIFIED?

YES

SET =2

SET THE LAST ELEMENT OF IFLAG TO 1.

RETURN

Fig. B-5 SETUP subroutine (sheet 2 of 2)



225

ENTER START

CALL ICARD TO READ A CARD FROM THE INPUT STREAM
AND PLACE IN IWRD.

WAS THE CARD READ BY IARD AN INSTRUCTION CARD (SPECIAL
CHARACTER IN IWRD(1))?

YES

WAS THE INSTRUCTION '*END'?

SET = 2.

CALL RECHEK TO CHECK PRECEDENCE RULES AND ENTRY
OF JOBS INTO THE J-TABLE FROM MNAME.

RETURN.

\PRINT AN APPROPRIATE ERROR MESSAGE. /

F SET = 4. ~1 RETURN.

DID THE CARD HAVE VALID NAME CARD SYNTAX ('NAME'

IN IWRD(1) AND '=' IN IWRD(2))?

YES

N = 3.

IS THE NAME IN IWRD(N)'ACCORDING TO THE SYNTAX
FOR NAMES (BEGINS WITH ALPHABETICAL CHARACTER)?

YES

IS THE NAME IN IWRD(N) IN THE BST (NAME)?
YES

Fig. B-6 ENTER subroutine (sheet 1 of 2)



226

A

IS THE NAME IN IWRD(N) ALREADY IN MNAME?

IS THERE SPACE AVAILABLE IN MNAME FOR THE NAME
IN IWRD(N)?

YES

ENTER THE NAME IN IWRD(N) INTO MNAME.

NJOBER = NJOBER + 1

N=+1

HAS THE END OF NAMES BEEN REACHED FOR THE

PRESENT CARD (IWRD(N) = 0)?
SNO

IS THERE A COMMA IN IWRD(N)?

YES

1 N=N+1

PRINT AN APPROPRIATE WARNING MESSAGE

Fig. B-6 ENTER subroutine (sheet 2 of 2)



227

RECHEK START B

LIST(*) = 0, N = 0, NT = 0, NDPL = 0.

ARE ANY OF THE JOBS IN MNAME LISTED AS THEIR OWN
PREDECESSORS?

YES

PRINT A WARNING MESSAGE.

SET THIS PREDECESSOR ENTRY FOR THE JOB IN QUESTION
TO 0.

IS EACH PREDECESSOR LISTED FOR EACH JOB IN MNAME
ALSO LISTED IN MNAME?

NO
IS THE PREDECESSOR IN QUESTION ENTERED IN THE
NAME ARRAY?

ES

IS THERE ROOM IN NNAME FOR THIS PREDECESSOR?

ENTER THE PREDECESSOR INTO MNAME.

I N C R EM E N T N (T H E CO U N T E R F O R N O . O F J O B S E N T E R ED

INTO MNANE).

PLACE THE NAME OF THE PREDECESSORS THAT WERE ENTERED
INTO MNAME INTO THE LIST ARRAY.

ARE THERE ANY PREDECESSOR LOOPS OF LENGTH 2 ?

PLACE THE MEMBERS OF EACH PREDECESSOR LOOP OF LENGTH
2 WITHOUT REPETITION INTO IDPL(NDPL,1) AND
IDPL(NDPL,2) WHERE NDPL IS A COUNTER ON THE NO. OF
SUCH LOOPS.

HAVE ALL PREDECESSORS BEEN ENTERED INTO MNAME YES
(IS N = NT) ?

NT = N A

Fig.B-7 RECHEK subroutine (sheet 1 of 4)



228

WERE ANY MORE PREDECESSORS ENTERED INTO
M NAME ? (N > 0)

YES

PRINT THE NON-ZERO ENTRIES OF THE LIST ARRAY

WERE ANY PRECEDENCE LOOPS OF LENGTH 2 FOUND ?

PRINT A WARNING MESSAGE LISTING THE MEMBERS OF
EACH PRECEDENCE LOOP OF LENGTH 2.

I 0. D

RETUNI=I+1.

IS I > 64 ?

IS THERE A NAME ENTERED IN MNAME(2,I) ?

\ Hs THIS JOB ATLREADY RRN pgncq ,pn (IFLAGi) =1
SNO

IFLAG(I) = 1.

FIND THIS JOB'S ENTRY IN THE NAME ARRAY AND PLACE
ITS NAME ARRAY INDEX INTO J.

IS THIS JOB PERIODIC ('*' IN MNAME(1,I)) ?

SET BIT 8 OF J-TABLE ENTRY I's WORD 27 TO 1.
(JM2(27,I)8 = 1.)

IS THE JOB A TMR JOB (DATA(J,2) > 0) ?

SET BIT 11 OF J-TABLE ENTRY I's WORD
27 TO0 I (JM2 27,I)l1 = 1).

Fig. B-7 REfHEKsubroutine (sheet 2 of 4)



229

PLACE THE MNAME ARRAY INDEX (I) OF THE PRESENT

JOB INTO THE J-TABLE

(JM2(1,I)7-1 1)'

IS A PROCESSING SHAPE CURVE LISTED FOR THE
PRESENT JOB?

YES

SEARCH THE IDIST ARRAY FOR THE PROCESSING SHAPE
CURVE NAME CONTAINED IN MNAME (3,I) AND PLACE
ITS IDIST INDEX INTO IDX.

WAS THE NAME FOUND IN IDIST?

YES

JM2(11,I)15-11 = IDX. B

SETUP THE PREDECESSOR ENTRIES FOR THE PRESENT
JOB IN THE J-TABLE.

JM2(8,I) = TIME

PLACE THE NO. OF CPU MEMORY ACCESSES REQUIRED
FOR THE PRESENT JOB INTO THE J-TABLE
(JM2(9,I) = DATA(J,5)).

PLACE THE INSTRUCTION MIX FOR THE PRESENT JOB
INTO THE J-TABLE. (JM2(10,I)7_1 = DATA(J,6)*100).

PLACE THE EXTERNAL PRIORITY FOR THE PRESENT JOB
INTO THE J-TABLE. (JM2(12, I)15-11 = DATA(J,1))

PLACE THE PRESENT JOB'S MAIN MEMORY
SPACE REQUIREMENT INTO THE J-TABLE.
(JM2(17,I) 1 1 -1 = DATA(J,3))

Fig. B-7 RECHEK subroutine (sheet 3 of 4)



230

PLACE THE MEAN INTERARRIVAL TIME FOR THE

PRESENT JOB INTO THE J-TABLE.
(JM2(14,1) = DATA(J,7) IF JOB IS PERIODIC OR

= DATA(J,8) IFJ B APFTT)

IS F(IDX,1) > 1 ?
NO

IS DATA(J,4) < F(IDX,1)*DATA(J,5) ?

NO

JM2(15,I) = F(IDX,1)*DATA(J,5).

JM2(15,I) = DATA(J,4)

GENERATE THE SUCCESSOR RELATIONS FOR THE PRESENT JOB
FROM THE PREDECESSOR RELATIONS CONTAINED IN MNAME AND
PLACE IN THE J-TABLE.

D B

PRINT AN APPROPRIATE ERROR MESSAGE

SET = 4

RETURN

Fig. B-7 RECHEK subroutine (sheet 4 of 4)



231

10 CFEC(KEY, ITIME, IOPRN, IOPND) START) 40

WHAT IS THE VALUE OF KEY?
r =3

=2

IS THE IFEC CHAIN IMPTY?

YES

RETURN

NO
< IS IT TIME TO REMOVE THE LEADING ENTRY?

SET THE START OF IFEC CHAIN POINTER (IFECS)
TO NEXT ENTRY POINTER FOR PRESENT ENTRY.

WHAT KIND OF EVENT IS THE PRESENT ENTRY?

CALL NEW SCHEDULE

SET NSCHED. I

ENTER JOB INTO ICEC

IS THE JOB IN THE PRESENT ENTRY ALREADY IN ICEC?

NO

DOES THE JOB IN THE PRESENT ENTRY HAVE
ANY PREDECESSORS?

YES

VE ALL PREDECESSORS OF JOB IN PRESENT NO
ENTRY BEEN RUN WITHIN TWICE THEIR NORMAL

PETITION PERIODS OF THE PRESENT TIME?

YES

CALL CEC FOR INSERTION OF JOB IN PRESENT
ENTRY INTO THE CURRENT EVENTS ARRAY.

RESET THE INFEC STATUS BIT INDICATOR TO 0
FOR THE JOB IN THE PRESENT ENTRY.

SET ALL ELEMENT OF THE PRESENT ENTRY TO 0.

Fig. B-8 FEC subroutine (sheet 1 of 2)



232

IS THE IFEC CHAIN EMPTY?
10

START AT THE HEAD OF THE IFEC CHAIN AND SEARCH

FOR THE FIRST ENTRY THAT HAS EVENT TIME GREATER
THAN THAT OF THE NEW ENTRY TO BE LINKED INTO
THE IFEC CHAIN.

SEARCH FOR AN EMPTY POSITION IN THE IFEC ARRAY

NO
S WAS AN EMPTY POSITION FOUND? >

PLACE THE NEW ENTRY INTO THE EMPTY JUST FOUND AND
MERGE THE NEW ENTRY INTO THE IFEC CHAIN
ACCORDING TO EARLIEST EVENT TIME.

NO
IS THE NEW ENTRY A JOB?

SET THE INIFEC INDICATOR STATUS BIT IN THE J-TABLE
FOR THE NEW ENTRY

RETURN 1400

IS THE IFEC CHAIN EMPTY?

YES

PLACE-1 INTO IPASS(8).

PLACE THE EVENT TIME OF THE ENTRY AT THE HEAD OF
THE IFEC CHAIN INTO IPASS(8)

RETURN

Fig. B-8 FEC subroutine (sheet 2 of 2)



233

CEC(KNOW, K) START

NEW JOB
SCHEDULE COMPLETION

WHAT IS TO BE DONE?

INSERT NEW
100 RECALCULATE PRIORITIES ENTRY 1000

FIND AN EMPTY (I) IN THE
5000 ICEC ARRAY.

ICEC(2,I) = K, ICEC(3,I) = JCLK, ICEC(1,I) = 0,
ICEC(4,I) = 0, ICEC(5,I) = 0.

NO
IS JOB K RESIDENT IN MEMORY?

YES

IS JOB K'S LAST RUN TIME = 0
YES

GET JOB K'S MAIN MEMORY SPACE REQUIREMENT AND PLACE
IN MMS.

SET JOB K'S NEXT INTERRUPT POINT TO MS*NMINBLX

SET JOB K'S STATUS BITS AS FOLLOWS: LOAD = 1,
MODE = 1, WAIT MEMORY = 1, WAIT IOP = 1, READY = 1

- INCREMENT THE NO. OF JOBS WAITING MEMORY (N'JW) BY 1.

CALL SHAPE TO UPDATE JOB K'S NEXT INTERRUPT POINT

SET JOB K'S STATUS BIT AS FOLLOWS: WAIT CPU = 1,
READY = 1

IPASS(1) = IPASS(1) + 1

DETERMINE WHETHER OR NOT A CALL FOR A NEW SCHEDULE
SHOULD BE MADE. IF SO SET NSCHED.

RETURN

Fig. B-9 CEC subroutine (sheet 1 of 4)



234

START AT THE BEGINNING OF THE ICEC ARRAY.

AOAS THE END OF THE ICEC ARRAY BEEN REACHED?
NO

< IS THE PRESENT ENTRY EMPTY?

YES

GO TO THE NEXT ENTRY OF THE ICEC ARRAY.

CALCULATE THE INTERNAL PRIORITY OF THE PRESENT ENTRY
USING FACTORS OF CLOSENESS TO NEXT TARGET TIME,
AMOUNT OF TIME ALREADY SPENT IN THE ICEC ARRAY,
EXTERNAL PRIORITY AND MEMORY PREFERENCE FACTOR.

IS THE INTERNAL PRIORITY JUST CALCULATED
GREATER THAN THE MAXIMUM ALLOWABLE

SINTERNAL PRIORITY?

YES

S E T T H E P R E S E N T E N T R Y ' S I N T E R NA L P R I O R I T Y T O

THE MAXIMUM ALLOWABLE PRIORITY.

S IPASS(2) = IPASS(2) + 1.

MERGE THE PRESENT ENTRY INTO THE ICEC CHAIN
ACCORDING TO ITS INTERNAL PRIORITY.

RETURN

Fig. B-9 CEC subroutine sheet (2 of 4)



235

100 I SEARCH THE ICEC CHAIN FOR JOB K

WAS THE SEARCH SUCCESSFUL?

RELINK THE CHAIN AROUND JOB K'S ENTRY

RESET JOB K'S READY BIT TO 0 IN J-TABLE

ZERO JOB K'S ENTRY IN THE ICEC ARRAY

IPASS(1) = IPASS(1) - 1
IPASS(2) = IPASS(2) - 1

DETERMINE WHETHER OR NOT A NEW SCHEDULE
SHOULD BE CALLED FOR DEPENDING ON THE
AMOUNT OF SPACE AND BANDWIDTH GIVEN UP
IN MAIN MEMORY BY JOB K. IF A NEW
SCHEDULE IS CALLED FOR SET NSCHED

RETURN

SEARCH THE ICEC ARRAY FOR JOB K.

NO
WAS THE SEARCH SUCCESSFUL?

SET JOB K'S ENTRY IN THE ICEC ARRAY TO .

IPASS(1) = IPASS(1) - I1

RETURN

Fig. B-9 CEC subroutine (sheet 3 of 4)



236

5000

LOAD THE ICEC INDEXES OF ALL SCHEDULED JOBS INTO
CONSECUTIVE LOCATIONS OF NAML.

CALCULATE THE PRIORITES OF ALL THE SCHEDULED
JOBS.

REORDER THE NAML LIST ACCORDING TO NON-INCREASING
PRIORITY OF JOBS ASSOCIATED WITH ICEC INDEXES IN
NAML.

RELINK THE ICEC CHAIN ACCORDING TO THE ORDERING OF
THE ICEC INDEXES IN NAML.

RETURN.

Fig. B-9 CEC subroutine (sheet 4 of 4)



237

HLS(KEY,JOB) START

PROCESSOR ASSIGNMENT JOB COMPLET
WHAT IS TO BE DONE?

500 INITIAL J-TABLE SCAN 100

FIND THE INDEX OF THE REVERSE ERROR FUNCTION
fABLE FROM IDIST AND PLACE IN IDXERN.

B FIND THE INDEX OF THE STANDARD DEVIATIONS OF
THE PROCESSING CURVES AND PLACE IN IDXSTD.

SCAN J-TABLE FOR JOB ENTRIES NOT YET
PROCESSED.

NO
J-TABLE ENTRIES ALL PROCESSED? Y

I=INDEX OF PRESENT ENTRY. RETURN

CALCULATE THE MEAN NO. OF MEMORY ACCESS
REQUESTS AND STD. DEV. FOR JOB I FOR BOTH
CPU AND IOP PROCESSING.

CALCULATE THE MINIMUM EXPECTED PROCESSING
TIME FOR JOB I AND PLACE IN J(20,I).

SET JOB I'S LOAD, MODE, WAIT MEMORY, AND
WAIT IOP STATUS BITS TO 1.

DETERMINE WHETHER OR NOT JOB I SHOULD BE
RESIDENT IN MAIN MEMORY AND SET JOB I'S
RESIDENCY STATUS BIT IF JOB I IS RESIDENT.

A

Fig. B-10 HLS subroutine (sheet 1 of 6)



238

DOES JOB I HAVE ANY PREDECESSORS?
NO

100 A

CALCULATE JOB I'S NEXT TARGET TIME.

MUST JOB I BE LOADED BEFORE PROCESSING CAN PROCEED.

YES

CALCULATE JOB I'S MINIMUM DTIM = 0.
LOAD TIME AND PLACE IN LDTIM.

IS NEXT TARGET TIME FOR JOB I < 3*(MIN. PROCESSING N
TIME + LDTIM) + PRESENT TIME?

EVENTS CHAIN WITH EVENT TIME EQUAL TO NEXT
TARGET TIME -3a(MIN. PROCESSING TIME +LDTIM) + PRESENT TIME.

TIS NOWRUN = 0?

NOWRUN = 0.

Fig. B-10 HLS subroutine (sheet 2 of 6)



239

500 PLACE THE NO. OF FREE CPUS INTO NFCPU.

PLACE THE NO. OF FREE IOPS INTO NFIOP.

D

START AT THE HEAD OF THE ICEC CHAIN

HAS THE END OF THE ICEC CHAIN BEEN REACHED? J

NO

JINDX = INDEX IN J-TABLE OF PRESENT ENTRY IN ICEC.

IS JINDX'S STATUS WORD LOAD BIT SET?

YES

IS THE NO. OF IOPS ALREADY ASSIGNED
TO LOAD OPERATIONS > IQ2?

i s - NO

ARE JINDX'S STATUS WORD BITS AS FOLLOWS? YES
TMR/SIMPLEX=0O, READY=l, WAIT CPU=1I,

.WAIT MEMORY=O, WAIT IOP=0.

SNO E

ARE JINDX'S STATUS WORD BITS AS FOLLOWS,? YES
TMR/SIMPLEX=0, READY=1, WAIT IOP=l,
WAIT MEMORY=0, WAIT CPU=0.

NO

ARE JINDX'S STATUS WORD BITS AS FOLLOWS? YES

TMR/SIMPLEX=1, READY=I, WAIT CPU=1,
WAIT MEMORY=0, WAIT IOP=0.

NO G

ARE JINDX'S STATUS WORD BITS AS FOLLOWS? YES

NO TMR/SIMPLEX=1, READY=l, WAIT IOP=1,
WAIT MEMORY=0, WAIT CPU=O. H

Fig. B-10 HLS subroutine (sheet 3 of 6)



240

NPIoP > o? ) NCP > o? ;>
No No

F EI

YES ES YES

NFIOP 3? NFCPU > 0?

NO NO
0? NO

< oF_ U < ? 0... Y

NFCPU 0 ? 
07OP>O

YES YES

G) G

NFIOP > 3? NFC----~F PU > 3?

YES YES

ASSIGN IOP(S) TO ASSIGN CPU(S) TO
JNAM AS REQUIRED JNAM AS REQUIRED

UPDATE NFIOP UPDATE NFCPUS

UPDATE STATUS UPDATE STATUS
BITS FOR JINDX BITS FOR JINDX

YES NFCPU > 0

NO
YES NO-NFIOP > 0

GO TO NEXT ENTRY ETURETURN

Fig. B-10 HLS subroutine Isheet 4 of 6)



241

ALL CEC FOR REMOVAL OF COMPLETED JOB FROM 1000
THE CURRENT EVENTS CHAIN.

YES

IS JOB'SPREEMPT. BIT SET?

DECREMENT NO. ACTIVE JOBS BY 1.

DECREMENT NO. INITIATED JOBS BY 1.

SET JOB'S LAST RUN TIME TO PRESENT TIME

DOES JOB HAVE ANY PREDECESSORS?

NO
YES NOY NO

S-< IS JOB PERIODIC

PERIOD TO NEXT USE UI IFORM RANDOM DISTRI-

RUN TIME (NPRD) = BUTION TO DETERMINE PERIOD

REPETITION PERIOD TO NEXT RUN TIME (NPRD)

NOIS JOB'S LAST RUN TIME < JOB'S PREVIOUS ES
TARGET TIME?

JOB'S NEXT TARGET TIME = JOB'S NEXT TARGET TIME =
JOB'S LAST RUN TIME + JOB'S PRESENT TARGET TIME

NPRD + NPRD

IS ICLK+2*(JOB'S MIN. PROCESSING TIME) GREATER

S THAN JOB'S NEXT TARGET TIME?

YES

JOB'S NEXT TARGET = PRESENT TIME + K
2*(JOB'S MIN. PROCESSING TIME)

Fig. B-10 HLS subroutine (sheet 5 of 6)



242

W IL L JOB REQUIRE LOADIN G INT O M A IN MEMORY YES
BEFORE ITS NEXT PROCESSING RUN CAN PROCEED?

NO

CALCULATE JOB'S MINIMUM
LDTLOAD TIE AND PLACE IN

LDTIM.

NEXT EVENT TIME = NEXT TARGET TIME
- 3*(MIN. PROCESSING TINE + LDTIM)

CALL FEC FOR INSERTION OF JOB INTO THE L
FUTURE EVENTS CHAIN WITH EVENT TIME AS
CALCULATED IMEDIATELY ABOVE..

IS JOB RESIDENT IN MAIN MENDRY ?

NO

CALL MENRLS TO RELEASE ALL OF JOB'S MAIN C
MEMORY SPACE.

DOES JOB HAVE ANY SUCCESSORS THAT HAVE NOT
BEEN EXAMINED FOR POSSIBLE PROCESSING.

IDXSUC = INDEX IN J-TABLE OF NEXT SUCCESSOR
OF JOB THAT HAS NOT YET BEEN PROCESSED.

SIS IDXSUC ALREADY IN CURRENT OR FUTURE VE T

NOWRUN = 1 RETURN

Fig. B-10 HLS subroutine (sheet 6 of 6)



243

NORPRB(PM, STDP, RM, STDR, IDXERN, PROB) START

PROB = 0.0

IS PROCESSING INTERVAL MEAN MINUS THREE
STD. DEV. < THREE STD. DEV. BELOW THE

REQUEST MEAN?

NO
YES IS REQUEST MEAN MINUS THREE STD. DEV.

> PROCESSING MEAN PLUS THREE STD. DEV.?

DEV. > THREE STD. DEV. ABOVE REQUEST MEAN?
NO.

PROB = PROBABILITY THAT A SAMPLE FROM
PROCESSING DISTRIBUTION IS < THREE

STD. DEV. BELOW REQUEST MEAN.

PROB =1.0 PROB = 0.0

RETURN RETURN

CALCULATE UPPER AND LOWER BOUNDS OF INTEGRATION.

CALCULATE STARTING TABLE INDEXES FOR EACH DISTRIBUTION

CALCULATE INTERVAL INCREMENTS FOR EACH DISTRIBUTION.

SNORPRB 
subroutine 

sheet 

1 of 
2)

Fig. B-11 NORPRB subroutine (sheet 1 of 2)



244

A

GET X1 = PROBABILITY THAT PROCESSING INTERVAL
IS BETWEEN PROCESSING INDEX AND PROCESSING
INDEX + INCREMENT.

GET X2 = PROBABILITY THAT REQUEST SIZE IS
GREATER THAN PROCESSING INDEX.

PROB = PROB + X1 * X2.

INCREMENT INDEXES.

ARE INDEXES > UPPER BOUND OF INTEGRATION?

- Yes

RETURN

Fig. B-11 NORPRB subroutine (sheet 2 of 2)



245

INTERRUPT i LLS(KIEY,JOB) START JOB

NEXT INTERRUPT POINT.

SET JOB'S MODE TO I/0.

< IS JOB'S PREEMPT BIT SET? >

N RESET JOB'S PREEMPT BIT TO 0.

NON

JOB(NJOB) AMONG THE THREE YESHIGHEST PRIORITY JOBS THATF I/O A
WANT CPUS AND ARE QUALIFIED <INI?

TO ACCEPT THEM.
YES

WAS SUCH A TMR JOB FOUND? > SET JOB'S HOLD BIT TO i.

YES

SSIGN JOB'S CPUS TO NJOB. SEARCH FOR IOP(S) FOR JOB.

UPDATE NJOB'S STATUS IN THE ENOUGH IOPS FOUND FOR JOB?
J-TABLE AND ICEC CHAIN. p NO

SET JOB'S WAIT IOP STATUS
BIT TO 1. SET JOB'S ACTIVITY

WSRE ANY SIMPLEX JOBS FOUND? B IT T O 0

S RE TURN
SET JOB'S CPUS TO IDLE

ASSIGN IOPS TO JOB.

ASSIGN AS MANY OF JOB'S CPUS
TO THESE SIMPLEX JOBS AS SET JOB'S WAIT I/0 CMPLTN.
POSSIBLE. SET ANY REMAINING .
CPUS TO IDLE. RETURN

Fig. B-12 LLS subroutine (sheet 1 of 8)



246

SEARCH THE CURRENT EVENTS CHAIN FOR A NEW

JOB (NJOB) THAT IS WAITING FOR A CPU AND 20

IS QUALIFIED TO ACCEPT ONE.

YES NO
WAS SEARCH SUCCESSFUL?

< IS NJOB TMR 1 ET JOB'S CPU TO IDL

UPDATE NFREE WITH NO.
OF IDLE CPUS ASSIGN JOB'S CPU

TO NJOB

NFREE > 2?
UPDATE NJOB'S

NO STATUS IN J-TABLE

NEED = 2 - NFREE AND ICEC CHAIN

CALL LAST3.TO SEARCH FOR .
SIMPLEX JOBS OF LOWER PRIORITY ASSIGN FIRST TWO

THAN NJOB FOR PREEMPTING IDLE CPUS TO NJOB

DID LAST3 .FIND NEEDOR .

MORE JOBS TO PREEMPT?
ASSIGN THE IDLE

NO CPUS TO NJOB

CONTINUE SEARCHING ICEC CHAIN
FOR SIMPLEX ONLY JOBS THAT PREEMPT THE NEED
ARE WAITING FOR A CPU LOWEST PRIORITY
AND ARE QUALIFIED TO JOBS THAT LAST3
ACCEPT ONE. FOUND AND REASSIGN

THEIR CPUS TO
NJOB.

12

Fig. B-12 LLS subroutine (sheet 2 of 8)



247

CALL SHAPE TO UPDATE JOB'S NEXT INTERRUPT POINT 1000

SET JOB'S IOP'S TO IDLE

UPDATE NFREE WITH NO. OF IDLE IOPS

IS NFREE < 3?

SEARCH THE ICEC CHAIN FOR THE HIGHEST PRIORITY TMR

JOB THAT IS WAITING FOR IOPS AMONG THE THREE HIGHEST

PRIORITY JOBS THAT ARE WAITING FOR IOP(S). IF NO TMR
JOB IS FOUND RETAIN THE INDEXES OF THOSE JOBS
FOUND IN IHOLD(1) THRU IHOLD(3). RETAIN THE NO.

FOUND IN IHOLD(5). IF A TMR JOB IS FOUND PLACE
ITS INDEX IN IHOLD(1), SET IHOLD(5) = 1 &STOP SEARCH.

SEARCH THE ICEC CHAIN FOR THE NFREE HIGHEST

PRIORITY SIMPLEX JOBS THAT ARE WAITING FOR AN

IOP. RETAIN THE INDEXES OF THOSE JOBS FOUND

IN IHOLD(1) AND IHOLD(2). RETAIN THE NO. FOUND

IN IHOLD(5)

ASSIGN IOPS TO THE JOB(S) FOUND IN THE ABOVE

SEARCH AND UPDATE THEIR STATUS WORDS IN THE

J-TABLE AND ICEC CHAIN

1200

Fig. B-12 LLS subroutine (sheet 3 of 8)



248

1200

RESET JOB'S MODE TO CPU. RESET JOB'S WAIT I/0
COMPLETION TO NOT WAITING.

< IS JOB'S HOLD BIT SET TO 1?

NO
RESET JOB'S HOLD BIT

UPDATE NFCPU WITH THE NO.
OF IDLE CPUS.

15 -'IS JOB TMR?

ES NO
IS NFCPU = 0?

CALL LAST 3 TO SEARCH FOR ASSIGN ONE OF THE IDLE

A NEW SIMPLEX JOB OF CPUS TO JOB.

LOWER PRIORITY THAN JOB

THAT HAS A CPU. SET JOB'S ACTIVE BIT IN
THE ICEC CHAIN TO 1.

DID LAST 3 FIND A
LOWER PRIORITY JOB

WITH A CPU? PREEMPT THE LOWEST
PRIORITY JOB THAT LAST 3

NO FOUND AND REASSIGN ITS

SET JOB'S WAIT CPU BIT TO 1 CPU T JOB.

SET JOB'S ACTIVITY BIT TO 0

SET JOB'S ACTIVE BIT IN
ICEC CHAIN TO 1.

RETURN

Fig. B-12 LLS subroutine (sheet 4 of 8)



249

NO YES
IS NFCPU> 3?

NEED = 3 - NFCPU. ASSIGN THREE OF THE
IDLE CPUS TO JOB.

CALL LAST3 TO .SEARCH
FOR SIMPLEX JOBS OF
LOWER PRIORITY THAN
JOB WITH CPUS.

CALL LAST3 TO SEARCH FOR
A NEW TMR JOB OF LOWER

DID LAST3 FIND PRIORITY THAN JOB WITH
CPUS FOR PREEMPTING.

PREEMPT THE NEED No
LOWEST PRIORTIY JOBS THA WAS SWAS SEARCH SUCCESSFUL?
LAST3 FOUND-AND ASSIGN.
THEIR CPUS TO JOB. IF
NEED WAS LESS THAN PREEMPT THE LOWERTHREE-ASSIGN THE 3-NEEDIDLE CPS TO JO. PRIORITY TMR JOB ANDIDLE CPUS TO JOB. ASSIGN ITS CPUS TOASSIGN ITS CPUS TO

JOB.

SET JOB'S ACTIVITY BIT TO 1. SET JOB'S ACTIVITY BIT TO 0
SET JOB'S WAIT CPU BIT TO 0. SET JOB'S WAIT. CPU BIT TO

RETURN

Fig. B-12 LLS subroutine (sheet 5 of 8)



250

EE A IS JOB TMR? 200

YES

UIS JOB'S MODE CPU? NO

SEARCH THE ICEC CHAIN FOR A NEW TMR JOB (NJOB)

WAS THE SEARCH SUCCESSFUL?

REASSIGN JOB'S CPUS TO NJOB.

<ERE ANY SIMPLEX JOBS WITH THE OTHER PROPERTIES FOUND?
YES

REASSIGN AS MANY OF JOB'S CPUS TO THE NEW SIMPLEX
JOBS AS POSSIBLE. SET ANY REMAINING CPUS TO IDLE.

UPDATE NJOB'S STATUS. SET JOB'S CPUS TO IDLE.

UPDATE JOB'S STATUS IN THE J-TABLE. 1 RTURN

SEARCH THE ICEC CHAIN FOR A NEW TMR JOB (NJOB) AMONG THE
THREE HIGHEST PRIORITY JOBS THAT ARE WAITING FOR IOP(S).
IF THE NO. OF JOBS ALREADY ASSIGNED TO LOAD OPERATIONS IS
> IQ2 THEN IGNORE JOB'S WHOSE LOAD BITS ARE SET TO 1.

YES
<WAS SEARCH SUCCESSFUL? -- REASSIGN JOB'S IOPS

SNO TO NJOB.

-"'ERE ANY SIMPLEX JOBS WITH THE OTHER PROPERTIES FOUND?

REASSIGN AS MANY OF JOB'S IOPS TO THE NEW SIMPLEX JOBS AS
POSSIBLE. SET ANY REMAINING IOPS TO IDLE.

SET JOB'S IOPS TO IDLE. UPDATE NJOB'S STATUS.
NO

IS JOB'S HOLD BIT SET TO 1?

Fig, B-12 LLS subroutine (sheet 6 of 8)



251

2005200

< IS JOB'S MODE CPU?

YES

SEARCH THE ICEC CHAIN FOR ANEW JOB (NJOB) THAT IS WAITING
FOR CPU(S).

YES NO
WAS THE SEARCH SUCCESSFUL?

IS NJOB TMR? SET JOB'S CPU TO IDLE

NO

REASSIGN JOB'S CPU TO NJOB.

UPDATE NE WITH THE NO. OF IDLE CPUS

NO
IS NE > 2

ASSIGN TWO OF THE IDLE CPUS TO NJOB.

CALL LAS13 TO;SEARCH FOR SIMPLEX JOBS.OF LOWER PRIORITY
THAN NJOB WITH CPUS.

NO
DID LAST 3 -FIND AT LEAST .3-NE CPUS?

PREEMPT THE 3-NE LOWEST PRIORITY JOBS OF THE JOBS THAT
LAST3 FOUND WITH CPUS.AND REASSIGN.THEIR CPUS TO NJOB.

CONTINUE SEARCHING THE ICEC CHAIN FOR A NEW SIMPLEX JOB
(NJOB) THAT IS WAITING FOR A CPU.

IF NECESSARY UPDATE THE NEW JOB'S STATUS IN THE ICEC CHAIN
AND IN THE J-TABLE. UPDATE JOB'S STATUS IN THE J-TABLE.

RETURN

Fig. B-12 LLS subroutine (sheet 7 of 8)



252

SEARCH THE ICEC CHAIN FOR A NEW JOB (NJOB) THAT IS
WAITING FOR AN IOP. IF THE NO. OF IOPS ALREADY ASSIGNED 300
TO LOAD OPERATIONS IS > IQ2 THEN IGNORE JOBS WHOSE LOAD
BIT IS SET TO 1.

WAS THE SEARCH SUCCESSFUL?

YES
SET JOB'S IOP TO IDLE

IS NJOB TMR?

UPDATE NE WITH THE NO. OF IDLE IOPS

YES
IS NE > 2?

CONTINUE. SEARCHING FOR THE ICEC CHAIN FOR A SIMPLEX JOB
THAT IS WAITING FOR AN IOP. IF THE NO. OF IOPS ALREADY
ASSIGNED TO LOAD OPERATIONS IS > IQ2 THEN IGNORE JOBS
WHOSE LOAD BIT IS SET TO 1.

ASSIGN TWO OF THE IDLE IOPS TO NJOB.

REASSIGN JOB'S IOP TO NJOB.

UPDATE NJOB'S STATUS IN THE JCEC CHAIN AND J-TABLE.

< IS JOB'S HOLD BIT SET TO 1? 2

NO

UPDATE JOB'S STATUS IN THE J-TABLE.

RETURN

Fig. B-12 LLS subroutine (sheet 8 of 8)



253

PEX(IDXGAU) START.

START AT THE HEAD OF THE CURRENT EVENT CHAIN

AT THE END OF THE CURRENT EVENTS CHAIN?

NO
A GO TO THE NEXT ENTRY IN THE

CURRENT EVENTS CHAIN

NO
IS THE PRESENT JOB ACTIVE?

FE

ARE MEMORY ACCESSES TO BE DISTRIBUTED RANDOMLY
OVER EACH JOB'S MEMORY SPACE OR SEQUENTIALLY
ACCORDING TO PRESENT POINT IN EACH PROGRAM?

RANDOMLY

FIND THE AMOUNT OF MAIN MEMORY SPACE THAT THE PRESENT
JOB HAS IN EACH MEMORY MODULE AND PLACE IN MSPACE
(MODULE INDEX)

PLACE THE TOTAL AMOUNT OF MEMORY SPACE THAT THE
PRESENT JOB HAS INTO JMSTOT

OBTAIN THE TOTAL NUMBER OF MEMORY ACCESS REQUESTS
(IACCS) TO BE MADE BY THE PRESENT JOB DURING THIS
SIMULATION STEP FROM A NORMAL DISTRIBUTION WITH
MEAN AND STD. DEV. OBTAINED FROM PRESENT JOB'S
J-TABLE ENTRY.

RANDOM OR SEQUENTIAL DISTRIBUTION?D
RANDO

C 4 IS PRESENT JOB TMR

IACCS = 3* IACCS

Fig. B-13 PEX subroutine (sheet 1 of 4)



254

DISTRIBUTE THE PRESENT JOB'S MEMORY ACCESS REQUESTS OVER
ALL MEMORY MODULES IN A LINEAR MANNER ACCORDING TO THE
AMOUNT OF SPACE OCCUPIED BY THE-PRESENT JOB IN EACH
MEMORY MODULE AND PLACE IN NREQ(ICEC INDEX, MODULE
INDEX).

DISTRIBUTE THE PRESENT JOB'S MEMORY ACCESS REQUESTS TO
THE MEMORY MODULES IN WHICH THE PRESENT JOB HAS SPACE
ACCORDING TO THE COMPLETION POINT OF THE PRESENT JOB.

SUM THE TOTAL NUMBER OF ACCESS REQUESTS MADE TO EACH
MEMORY MODULE AND PLACE IN NTR (MODULE INDEX). SUM THE
TOTAL PRIORITIES OF ALL JOBS MAKING ACCESS REQUESTS TO
EACH MEMORY MODULE AND PLACE IN NTP (MODULE INDEX).

E

Fig.B-13 PEX subroutine (sheet 2 of 4)



255

UPDATE THE CURRENT ESTIMATE OF THE AVAILABLE BANDWIDTH
OF THE FREE SPACE IN EACH MEMORY MODULE AND PLACE
THE CURRENT ESTIMATE IN NAA(MODULE INDEX).

DISTRIBUTE THE AVAILABLE MEMORY ACCESSES FROM EACH
MEMORY MODULE TO EACH ACTIVE JOB RESIDING IN EACH
MODULE ACCORDING TO EACH JOB'S PRIORITY RELATIVE
TO THAT OF ALL OTHER ACTIVE JOBS RESIDING IN EACH
MODULE AND ACCORDING TO THE NO. OF REQUESTS MADE
BY EACH ACTIVE JOB TO EACH MODULE.

IF THE TOTAL NO. OF ACCESS REQUESTS TO A MODULE IS
LESS THAN OR EQUAL TO THE NO. OF ACCESSES AVAILABLE
FROM THAT MODULE THEN GRANT EACH JOB AS MANY
ACCESSES AS IT REQUESTS FROM THAT MODULE.

IF THE TOTAL NO. OF ACCESS REQUESTS TO A MODULE
EXCEEDS THE NO. AVAILABLE THEN FOR THOSE JOBS
REQUESTING LESS THAN OR EQUAL TO WHAT THEIR
RELATIVE PRIORITY DICTATES GRANT THE NO. REQUESTED
AND SUM THE DIFFERENCE BETWEEN WHAT THEIR
PRIORITY DICTATES AND THEIR ACTUAL REQUEST NO. AND
PLACE IN NUCA (MODULE INDEX)

FOR THOSE JOBS REQUESTING MORE THAN THEIR RELATIVE
PRIORITY DICTATES GRANT ACCESSES ACCORDING TO RELATIVE
PRIORITY PLUS A SHARE OF NUCA (MODULE INDEX)
ACCORDING TO RELATIVE PRIORITY OF ALL JOBS IN
EACH MODULE REQUESTING MORE THAN THEIR
RELATIVE PRIORITY DICTATES.

Fig. B-13 PEX subroutine (sheet 3 of 4)



256

UPDATE THE COMPLETION COUNTERS FOR ALL ACTIVE JOBS.

IF AN ACTIVE JOB'S LOAD STATUS BIT IS NOT SET THEN

CHECK THAT ACTIVE JOB FOR COMPLETION.

IF A JOB HAS COMPLETED THEN UPDATE ISTAT WITH THE RUN
STATISTICS OF THE COMPLETED JOB. CALL HLS FOR

PROCESSING THE COMPLETED JOB. CHECK THE COMPLETED

JOB'S PREEMPT STATUS BIT. IF THE COMPLETED
JOB'S PREEMPT BIT IS NOT SET TO I THEN CALL LLS
FOR REASSIGNMENT OF THE COMPLETED JOB'S
PROCESSOR(S).

FOR THOSE ACTIVE JOBS THAT DID NOT COMPLETE AT

THIS SIMULATION STEP CHECK FOR I/O INTERRUPT;

IF A JOB'S COMPLETION COUNT HAS EXCEEDED IT'S

CURRENT NEXT INTERRUPT POINT THEN CALL LLS
FOR EITHER I/O INTERRUPT INITIATION OR I/O

INTERRUPT COMPLETION AS THE CASE MAY BE.

UPDATE THE SHORT TERM AND LONG TERM CUMULATIVE
SYSTEM RESOURCE UTILIZATIONS.

RETURN

Fig. B-13 PEX subroutine (sheet 4 of 4)



257

NFMAL(KEY, JOB, NSPACE) START

NO
IS NFB(1) > 0?

< YES
IS KEY > 0?

SEARCH THE ICEC CHAIN FOR A JOB (JOB) THAT IS WAITING
FOR MEMORY

C WAS THE SEARCH SUCCESSFUL?

I= 1, L(*)=0, ITKOF(*, *)=0, MMS=AMOUNT OF SPACE RQD.

CALCULATE KNO FROM NO. OF FREE MEMORY BLOCKS (NFB(1)).

SCAN THE MAVL LIST PLACING BEST FITTING BLOCK FOUND
UP THRU BLOCK KNO INTO IBST1 PROVIDED IT HAS NOT
ALREADY BEEN SELECTED AND DOES NOT VIOLATE THE
OVERLAPPING MODULE RULE.

SELECT-THE FIRST BLOCK AFTER KNO THAT IS A BETTER
FIT THAN ANY BLOCK FOUND SO FAR PROVIDED IT

HAS NOT ALREADY BEEN SELECTED AND DOES NOT
VIOLATE THE OVERLAPPING MODULE RULE. IF SUCH
A BLOCK AFTER KNO IS NOT FOUND THEN
SELECT THE BLOCK IN IBST1 PROVEDED THERE IS

ONE IN IBST1.

WAS A BLOCK SELECTED? A

IS KEY = 0?

IF REQUIRED WRITE OUT THE
MAVL AND MALC CHAINS.

RETURN

Fig. B-14 NFMAL subroutine (sheet 1 of 2)



258

PLACE THE INDEX OF THE SELECTED BLOCK INTO L(I).

4YES

IS JOB TMR?

IS I > 3?

CREATE ANY REQUIRED NEW BLOCKS FROM THE INFORMATION
IN ITKOF AND THEN MAKE AN ALLOCATION FROM THE

END OF THE BLOCK WHOSE INDEX IS IN L TO JOB.

MERGE THE NEW BLOCKS INTO THE MAVL AND
MALC CHAINS.

UPDATE NFB(1)

B

CAN ANOTHER ALLOCATION BE MADE FROM PRESENT
LOCK PROVIDED APPROPRIATE ADJUSTMENT OF ITKOF IS

E TO AVOID VIOLATING OVERLAPPING MODULE RULE?

YES

PLACE INDEX OF PRESENT

BLOCK INTO L(I)

UPDATE NFB(I)

C

Fig, B-14 NFMAL subroutine (sheet 2 of 2)



259

MAPREF START

LOAD THE INDEXES FROM ICEC OF ALL JOBS THAT ARE WAITING
FOR MEMORY INTO CONSECUTIVE LOCATIONS OF NAML.

UPDATE NJWM WITH THE NO. OF JOBS WAITING.MEMORY.

LOAD ALL AVAILABLE MEMORY BLOCK INDEXES INTO
CONSECUTIVE LOCATIONS OF NBLK.

UPDATE NBPF WITH THE NO. OF FREE MEMORY BLOCKS.

ZERO ISAVE, ITKOF AND KPT R.

START AT THE HEAD OF THE NAML LIST.

GET THE NEXT JOB FROM THE NAML LIST. 180

GET THE MEMORY SPACE REQUIREMENT (MMS) FOR JOB.

1 0
95 

75

HAS THE LIST OF AVAILABLE BLOCK INDEXES IN NBLK YE S

BEEN EXHAUSTED FOR PRESENT JO B ON THIS PASS?

GET.THE NEXT BLOCK FROM NBLK. < IS I > 1?

- YES
WILL THE PRESENT JOB FIT INTO 

THEY

PRESENT BLOCK? 1

2000E

Fig. B-15 MAPREF subroutine (sheet 1 of 5)



260

SWHAT IS THE VALUE OF I?
2000 1 2

CAN THE PRESENT BLOCK BE USED WITHOUT VIOLATING
THE OVERLAPPING MODULE RULE WITH PREVIOUS
SELECTIONS FOR THE PRESENT TMR JOB BY APPROPRIATE
ADJUSTMENT OF ITKOF?

YES

CALCULATE THE PREFERENCE FACTOR FOR THE PRESENT JOB
AND PRESENT BLOCK.

IS THE PREFERENCE FACTOR JUST CALCULATED
GREATER THAN THAT FOR ANY PREVIOUS JOB AND
BLOCK WITH PRESENT VALUE OF I?

YES

UPDATE ISAVE (I,*) WITH PRESENT JOB'S INDEX FROM THE
J-TABLE, PRESENT BLOCK'S INDEX FROM MABL, AND
PREFERENCE FACTOR. UPDATE KPTMR (I,*) WITH JOB'S INDEX
IN NAML AND BLOCK'S INDEX IN NBLK.

SWAS ANY BLOCK ASSOCIATED WITH ANY JOB ON THE LAST

PASS WITH THE PRESENT VALUE OF I?
YES

24 IS THE PRESNET JOB TMR? 210

NO IS ALL OF BLOCK WHOSE MAVL INDEX IS INIISAVE (1,2)
TO BE ALLOCATED? f

REMOVE THIS BLOCK FROM NBLK AND MOVE THE BLOCK AT THE
END OF NBLK TO THE VACATED SLOT IF NECESSARY?

NBPF = NBPF - 1

Fig. B-15 NAPREF subroutine (sheet 2 of 5)



261

MOVE THE JOB WHOSE J-TABLE INDEX IS IN ISAVE (1,1) FROM
NAML AND FILL THE RESULTING VACANCY WITH THE ENTRY AT
THE END OF THE NAML LIST IF NECESSARY.

NJWM = NJWM - 1.

CALL MASGN FOR MAKING AN ALLOCATION OF MEMORY
TO THE JOB IN ISAVE (1,1) FROM THE BLOCK IN ISAVE (1,2).

UPDATE JOB'S PREFERENCE FACTOR IN J-TABLE WITH ISAVE(1,3).

AIS I i = ? NO

REMOVE THE PRESENT JOB FROM THE NAML LIST AND MOVE THE
ENTRY AT THE END OF THE NAML LIST TO THE VACANCY SLOT
IF NECESSARY.

REPLACE ANY BLOCKS THAT MAY HAVE BEEN TEMPORARILY
REMOVED FROM NBLK WHOSE INDEXES ARE IN KTMR(*, 2).

65

IF REQUIRED WRITE OUT THE MAVL AND MALC CHAINS.

RETURN

Fig. B-15 MAPREF subroutine (sheet 3 of 5)



262

240 WHAT IS THE VALUE OF I?

F<3

CAN A SECOND ALLOCATION BE MADE FROM THE PRESENT
BLOCK WITHOUT VIOLATING THE OVERLAPPING MODULE
RULE BY A SUITABLE ADJUSTMENT OF ITKOF?

YES

I=I+ 1

= 3
WHAT IS THE VALUE OF I?

< 3

CAN A THIRD ALLOCATION BE MADE FROM THE

PRESENT BLOCK WITHOUT VIOLATING THE OVERLAPPING

MODULE RULE BY A SUITABLE ATUSTMENT OF

ITKOF?

NO

TEMPORARILY REMOVE ANY PREVIOUSLY SELECTED BLOCKS
FOR THE PRESENT JOB FROM NBLK?

REPLACE ANY BLOCKS WHOSE INDEXES ARE IN KPTMR THAT
MAY HAVE BEEN REMOVED FROM NBLK.

320

I +1
NO

IS I > 332

REMOVE JOB FROM NAML AND FILL VACANCY WITH THE
ENTRY AT THE END OF THE NAML LIST IF NECESSARY

F 1NJWM = NJWM - 1

Fig. B-15 MAPREF subroutine (.sheet 4 of 5)



263

325 ITKOF(I, 1) = 1?

FIND AN EMPTY IN MAVL

CREATE A NEW AVAILABLE BLOCK FROM TAIL OF
MAVL(ISAVE(I,2)) AND INFORMATION IN ITKOF(I,*).
PLACE NEW BLOCK INDEX IN NBPF AT END OF LIST.

NBPF = NBPF + 1
4

IS ALL OF BLOCK IN MAVL(ISAVE(I,2)) TO BE
\ALLOCATED TO PRESENT JOB?

YES

REMOVE BLOCK WHOSE NBLK INDEX IS IN KPTT£
(I,2) FROM NBLK LIST AND FILL VACANCY WITH
BLOCK AT END OF NBLK LIST IF NECESSARY

NBPF = NBPF - 1

NO
NO IS I = l?

YES

UPDATE MEMORY PREFERENCE OF JOB IN J-TABLE
WITH ISAVE(1, 3).

CALL MASGN TO ALLOCATE MEMORY FROM BLOCK
IN MAVL(ISAVE(I, 2)) TO JOB IN ISAVE(I , 1).

320

Fig. B-15 MAPREF subroutine (sheet 5 of 5)



264

MEMRLS(JOB, JBLK) START

UPDATE NA, MAS AND IBWCTR ENTRIES CORRESPONDING
TO THOSE MEMORY MODULES WHICH ARE SPANNED BY JBLK.

M1 = 0, M = MAVLS.

NO
IS M > 0?

YES

0 IS MALC(JBLK,3) + MALC(JBLK,) = MAVL(M,3)?

pYES

ICASE = 0 ICASE = M = m

NENT = M M = MAVL(M,1)

YES
IS M > 0?

- IS Ml > 0? IS MAVL(M,2) > 0?
YES

IS MAVL(M1,3) + MAVL(MI,5) = MALC(JBLK,3)?

YES

ICASE = ICASE + 2, NENT = M1

NO
-- (IS ICASE = 3? -

MAVL(M1,1) = mAVL(M,1) < IS ICASE = 2?
MAVL(M1,4) = MALC(JBLK,1) YES

MAVL(M1,5) = MAVL(M1,5)
+ MALC(JBLK,5) + MAVL(M,5)

A 175 220

Fig. B-16 MEMRLS subroutine (sheet 1 of 4)



265

1751 A 175

No
MAVL(M,1) > 0 ?

MAVL(MAVL(M,1),2) = M1.

MAVL(M,*) = 0.
NFB(1) = NFB(1) - i.

MAv L(ML ,4) = =  MALC(JBLK,1).
MAVL(MI,5) = MAVL(M,5) + MALC(JBLK,5).

Yes
Is MALC(JBLK,2) > 0?

4No
MACS = MALC(JBLK,1).

MALC(MALC(JBLK,2),1) = MALC(JBLK,1).

S Is MALC(JBLK,1) > 0? ---- )

Yes

IALC(MALC(JBLK,1),2) = MALC(JBLK,2).

No
220 Is ICAS 1 ? 290

MAVL(M,3) = MALC(JBLK,3).
MAVL(M,5) = MAVL(M,5) + MALC(JBLK,5)

No
No Is MAVL(M,2) > 0? >

Yes
Is MAVL(MAVL(M,2),4) = JBLK ? >

MAVL(MAVL(M,2),4) = MALC(JBLK,1).

Fig. B-16 MEMRLS Subroutine (sheet 2 of 4)



266

(90 FIND AN PETY (I) IN MAVL

NENT = IQ

< IS MALC(JBLK, 1) > 0?

MALC(MALC(JBLK, 1), 2) = MALC(JBLK, 2

S IS MALC(JBLK, 2) > 0
NO

MALCS = MALC(JBLK, 1)

MALC(MALC(JBLK, 2), 1) = MALC(JBLK, 1)

NO r YES
IS M1 > 0

MAVL(IQ, 2) = -1. MAVL(M1, 1) = IQ.
MAVLS = IQ f* MAVL(IQ, 2) = Ml.

IS M > 0?

MAVL(M, 2) = IQ

MAVL(IQ, 1) = M, MAVL(IQ, 3) = MALC(JBLK, 3),
MAVL(IQ, 4) = MALC(JBLK, i), MAVL(IQ, 5) = MALC(JBLK,5
K = MALC(JBLK, 2).

NO
IS K > 0?

IS MALC(K. 4) = M? %NO

MALC(K, 4) = IQ, K = MALC(K, 2).

Fig. B-16 MEMRLS subroutine (sheet 3 of 4)



267

MAVL(1,1) = -1, MAVL(1,2) = -1
MAVL(1,3) = MALC(JBLK,3), MAVL(1,4) = MALC(JBLK,1),

MAVL(1,5) = MALC(JBLK,5), MAVLS = 1,
NENT = 1, 12 = MALC(JBLK,2).

NO
IS 12 > 0?

MALC(I2,4) = 1, 12 = MALC(12,2).

12 = MALC(JBLK,2).

YES YENO
IS 12 > 0?

LC(I2,1) = MALC(JBLK,1). I IMALCS = MALC(JBLK, 1).

I2 = MALC(JBLK,1).

<IS 12 > 0?
YES

MALC(2,2) = MALC(JBLK,2).

NFB(1) = NFB(1) + 1.

NAB = NAB - 1, MALC(JBLK, *) = 0.

RETURN.

Fig. B-16 MEMRLS subroutine (sheet 4 of 4)



268

MASGN(KEY, INDXJ, INDXB, ISPACE) START

JOB = INDEX IN J-TABLE FOR WHICH MEMORY IS TO BE ASSIGNED.
IBLKN = INDEX OF AVAILABLE BLOCK IN MAVL FROM WHICH

ASSIGNMENT IS TO BE MADE.
MMS = AMOUNT OF SPACE TO BE ASSIGNED.

FIND AN EMPTY (KEMPT) IN MALC.

KOCC1 0, KOCC = MALCS.

IS KOCC > 0?

YES
< IS MALC(KOCC, 3) > MAVL(IBLKN, 3)?

NO

KOCC = MALC(KOCC, 1), KOCC1 = KOCC.

IS KOCC1 > 0? IS KOCC1 > 0?
YES YES

MALC(KOCC1, 1) = KEMPT. - MALC(KEMPT, 2) = -1.
MALC(KEMPT, 2) = KOCC1. MALCS = KEMPT.

MALCS = KEMPT MALC(KEMPT, 2) = KOCC1.
MALC(KEMPT, 2) = -1 :MALC(KOCC1, 1) = KEMPT

MALC(KOCC, 2) = KEMPT

YES
IS ALL OF BLOCK IBLKN TO BE ALLOCATED?

140 MALC(KEMPT, 3) = MAVL(IBLKN, 3)+MAVL(IBLKN, 5)-MMS.
MAVL(IBLKN, 5) = MAVL(IBLKN, 5)-MMS.

310 MALC(KEMPT, 4) = MAVL(IBLKN, 1).
MALC(KEMPT, 5) = MMS, MAVL(IBLKN, 4) = KEMPT
NAB = NAB + 1.

Fig. B-17 MASGN subroutine (sheet 1 of 2)



269

IS MAVL(IBLKN,2) > 0?
NO

MAVLS = MAVL(IBLKN, 1)

3 MAVL(MAVL(IBLKN,2),1) = MAVL(IBLKN,1).

IS MAVL(IBLKN,1) > 0?
YES

MAVL(MAVL(IBLKN,1),2) = MAVL(IBLEN,2).

MALC(KEMPT,3) = MAVL(IBLKN,3),

MALC(KEMPT,4) = MAVL(IBLKN,1),

MALC(KEMPT,5) = MAVL(IBLKN, 5), KO = KOCCI.

NO
IS KO > O?

NO
IS MALC(KO,4) = IBLKN?

MALC(KO,4) + MAVL(IBLKN,1), KO = MALC(KO,2).

310 NFB(1) = NFB(1) - 1
MAVL(IBLKN,*) = 0

UPDATE THE ARRAY 'ENTRIES OF NA, MAS, AND IBWCTR

WHOSE CORRESPONDING INDEXES WERE SPANNED BY

THE BLOCK JUST ASSIGNED.

PLACE THE INDEX KEMPT IN THE FIRST--EMETY MEMORY
BLOCK ENTRY OF JOB IN THE J-TABLE OR OVERFLOW AREA

RETURN

Fig. B-17 MASGN subroutine (sheet 2 of 2)



270

OVFLMG (KEY,JOB,IFLD,IVAL, NNT) START-

PLACE REMOVE
WHAT IS TO BE DONE?

RETRIEVE

NSKIP = IVAL(1)5

IVAL(1)=0, K=0, JADD= J(24,JOB).

IS JADD > 0 ?NO
YES

NPNTB = 0, IPNT = 1.

IFHD = JOVFL(JADD,IPNT).

LFLD = IFHD 15-11.

< IS LFLD = IFLD? E

NPNTB = IPNT, IPNT = IFHD 10-6.

Y IS IPNT > 0 ?

JADD = JOVFL(JADD, 32).

NENTRY = IFHD 5-1, I=0.

I = I + i.

< IS I > NENTRY ?

NO YES
0-< IS NSKIP 0O ?

NSKIP = NSKIP-1. K = K+1

NO
IS K > NNT?

YES

SIVAL(K) = JOVFL(JADD,IPNT + I).

RETURN

Fig.B-18 OVFLMG subroutine (sheet 1 of 5)



271

K = 1, LAS TB = , JADD = J(24,JOB).

YES

IPNT = 1.

L IFHD = JOVFL(JADD.IPNT)i

LFLD = IFHDI5-ll, NPNTF = IFHD10,6, NENTRY-= IFHD
YES 1

IS LFLD = IFLD ?

IS NPNTF > 0 ? YE

NPNTF = 32 NPNTB = IPNT, IPNT =NPNTL

YES
IS IPNT + NENTRY < 25 ?

! NO
LASTBJADD JADD=JOVFL(JADD.2)J NPNTB = IPNT

IPNT = IPNT+NENTRY+3, JOVFL(JADD,NPNTB) 1, = IPNT.

IO JOVFL(JADD,IPNT) = IFLD*512.
IS NPNTF > 0 ?N

IS IPNT+NENTRY+1 < NPNTF I = 0.

<IS IPNT + NENTRY < 31 ? I = I + 1.
NPNTF = 32

YE S "IS IPNT + I > NPNTF ?

IS NPNTF = 32 ?
[JOVFL(JADD,IPNT+I) = IVAL(K).YES

JOVFLJADD,IPNT) = JOVFL(JADD,IPNT)+1, K = K+1.

RETURN YES IS K > NNT ? NO

Fig. B-18 OVFLMG subroutine (sheet 2 of 5)



272

YES JADD = 0

JADD = JADD + 1

IS JADD > 32 WRITE MESSAGE 'NO MORE
NO \ OOM IN OVERFLOW AREA'

IS JOVFL(JADD,1) = 0
YES

IS LASTB = 0 ?

YES JOVFL(LASTB,32) = JADD.

(2,JOB) = JADD, J(22,JOB)IFLD = IFLD RETUR

IPNT = 1, NPNTF = 32. 240 500

LASTB = 0 D

JADD = J(24,JOB) , K = 1 , ISKIP = IVAL(1).

YES
S IS JADD > 0 ?

NPNTB = 0, IPNT = 1. I WRITE ESSAGE 'CAN'T
FIND'.

IFHD = JOVFL(JADD,IPNT). RETURN.

LFLD = IFHD15-11 50 530

, IS LFLD = IFLD ?YES

NO

NPNTB =IPNT, IPNT = IFHD10-6 C

YES : NO

LASTB =.JADD, JADD = JOVFL(JADD,32).

Fig. B-18 OVFLMG subroutine (sheet 3 of 5)



273

54 NENTRY = IFHD-1

--~IS ISKIP < 0 ? A

ISI- IS SKIP > NENTRY ?

ISKIP = ISKIP - NENTRY 530

I = , L . I NENTRY - ISKIP

L= I + I, ISKP 0.

< IS I > NENTRY ? YE

JOVFL(JADD,IPNT + I) = 0. IS L = 1 ?

YES

K = K + 1 ITEMP = IPNT.

JOVFL(JADD,IPNT) = JOVFL(JADD,IPNT) - 1.

O IS K > NNT ?

IS I + 1ET

IS I > NENTRY ? S

NO
RETURN

JOVFL(JADD,IPNT + L) = JOVFL(JADD,IPNT + I).

JOVFL(JADD,IPNT + I) = O, L = L + 1.

Fig. B-18 OVFLMG subroutine (sheet 4 of 5)



274

K > NNT? NPNTF = IFHD 0-6
NO

S RETURN IS NPNTF > 0?

-JOVFL(JADD,NPNTB)5-1 o. IFHD = JOVFL(JADD,NPNTF).

ITEMP JADD. NENTRY IFHD~,.

NO YES D
O- i IS L A ST B > 0 ?

JOVFL(LASTB,32) = JOVFL(JADD,32) K > NNT?

<7 s JoVFL(JADD,32) >0?

J(24,JOB) = 0. J(24,JOB) = JOVFL(JADD,32).

J(22,JOB) = 0. JADD = JOVFL(JADD,32)

JOVFL(JADD,IPNT) = 0. JOVFL(ITEMP,32) = 0.

RETURN JOVFL(ITEMP,IPNT) = 0.

JOVFL(JADD,IPNT) = JOVFL(JADD,NPNTF).

I = 0. I = I + 1.
NO -- IS I > NENTRY S

-JOVFLAD.IPNT +JOVFL(JADD.NPN + 1=+ ).

N!- IS NPNTF > O? NPNTF = IFHD10-6

IPNT = ITEMP K > NNT?= K > NNT JOVFL(JADD,IPNT) =
530 YES JOVFL(JADD,IPNT)

SRETURN 30 -IDIFF*32
IPNT = NPNTF-IDIFF

Fig.B-18 OVFLMG subroutine (sheet 5 of 5)



APPENDIX C

PkOGRAM LISTINGS

**** WARNING ****
IN THE FOLLiOING PR3GRA% LISTINGS THE NORMAL FORTRAN
SEVENTY-TWO SPACE LINE HAS BEEN REPLACED BY A SIXTY SPACt
LINE WHICH IS SUITABLE FOP AN EIGHT AND ONE-HALF INCH
wIDE PAGE ,WITH A ONE AND UNE-HALF INCH LEFT HAND MARGIN
AND A ONE INCH I;IHT HAND MARGIN. THEREFORE IN THESE
LISTIIGS THE FIRST CADD OF A FOPTRAN STATEMENT BEGINS IN
C"LUMN SIXfEEN, PROCEEDS THPCUGH COLUMN SEVENTL-FIVE ANU
CONTIN:JFS UN COLUMN TWENTY-TWO OF THE FOLLOWING LINE AND
FVOS UN COLUMN THIRTY-THREE OF THE FOLLUWING LINE PROVIOEO
THE ORIGTNAL CARD HAD ANY NONBLANK CHARACTERS IN COLUMNS
SIXTY-ONF THROUGH SEVENTY-TWO OR THE FOLLOWING CARD WAS A
C3NTINJATION nF THIS STATEMENT. OTHERWISE IT ENDS IN THE
FIRST LINE OF THE STATE:ENT IN THIS LISTING. THE SECOND
AND SURSFOUENT CARDS OF A STATEMENT BEGINS IN THE FIRST
COLO ,M4 AFTER THE END OF THE PRECEEDING CARD IN THESt
LISTINGS. THE CNTINUATIUN SYMBOLS OF THE ORIGINAL CARD
STATEMENTS HAVE BEEN PEMOVEL) AND SUITABLE CONTINUATION
SYMBOLS HAVE BEEN PLACED AS APPROPRIATE IN COLUMN TWENTY-
nNE OF THESE LISTINGS

275



276

OLO CK DATA
CCMMON/BLK1/IASKIIDSHtLIND(33)tLINA(33)91BLK91OLRtIEQL

CvICST
CCMM3N/BLK1/INAME91DATAtMJDTIIBSTIEXITIIFLD
CCNMON/BLK15/KNAME(46)
CCVMON/BLK18/RUTL(15)
GATA RUTL/15*0.0/
OATA IASKilDSH#LINDPLINA/'****lgt ---- lt33*1----1933*0*

C***#/
DATA IBLKtIDLRtIEQLPIDST/* # 9 IS off= 194DISTI/
CATA INAME91DATAtMJDTtIBST/INAME't'DATA'9*MJDT'#'BST

C/
04TA IEXITIFLD/IEXITII*FLDI/
DATA KNAME/'CESZ'qlCON ','Nl lg'FECZ'9'PCT *t'Pl of

IP2 tf'Ql 'v'Q2 19'Q3 '# R siss of
COTA O9lMNBKf9 IMMCTIOIMMSTOIIMTTL#9'Nl 091N
CICSIINMODIINPCL'9'NPCSIONCPUI, 'IFBK4V'IWNl'j'IRN
C2*v'IRN3',IIRN41,11RN5$ttlRN6',OIRN7#,IIRN849 IIRN91
Ct'NSPF'9'MAPF't$RP0119ORP020,*RP031 ORP0419ORP050,$RPO
C619 IRPi)71"RP08't'RP,1,9't'RP109##RP110/
r

ENC
CCMMON/BLK1/IASKIDSHLIND(33)tLINA(33),IBLKtIDLRIEQL

C,1GST
CCMMON/BLK1/INAMEIDATAMJDTIBSTilEXIT#IFLD
CCVMON/BLK2/lWRD(lCl)qFLD(50)
CPIMON /BLK3/ IDIST(25),F(25,41),NDIST
CCVMON/BLK4/NAME(75#8),DATA(7599),NJCBONJOOER
UIVENSION NEXC(64)
INTEGER*2 NEXCNJOBNJOBER
COMMON/BLK5/ SET
CCYMON/BLK7/ JM(27#64)
INTEGER*2 JM
CCVMON/BLKB/ TIME
CCM 'ON/BLK11/ RTIME
CCVMGN/BLK12/PARM(35)
CCPVCN/BLK13/RPAR(11)
CONMt.)N/BLK14/IFLAG(47)tITAG(46)
CCNMON/BLK15/KNAME(46)
COPMON/BLK16/IBWCTR(24)tICEC(594-, )#ICECSTICPU(lv'),IPAS

cs(2c)t IF CSIFEC(40,4),IPROS(16),ISAVE(393),IVAL
L(jV(l '),MALC(256,5)p MALCSMAS(24),MAVL(128,5),MAVL
i-StMODNM(24),MTPl(24),NA(24)t NAA(24)vNABvNAGNA
CML(4:),NBLK(128),NF6(3),NJWMINSCHED, NRC'Q(4
Cz",,, 4)vNTP(?4),NTR(24),NUCA(24)



277

C
INTEGER*2 I!WCTRICECICECSJCPUIPASSIFECSIFECIPRO

CS, ISAVE, IVALOVMALCMALCSMASMAVLtMAVLSMOD
CNPMMTPI ,NA ,NAAtNABv NAGtNAMLNBLKtNFBNJWMvNSCHEO,
CNREQtNTPqNTRNucA
COMMON/BLK17/ ISTCNT, ISTAT(6#400), IUTL(6#200)
INTEGER*2 ISTATIUTL
COtMMON/BLK18/ AN,CUUPUUBWUtSPUBCUUBPUUBBWUBSPUA

CCUUAPUU, ABhU#ASPUvBQSIZAQSIZ
c
DIMENSION IOPT(4)
INTEGER*2 SET*TIME,HFIXIFLAG, [TAG
INTEGER PARMiGAUS/'GAus'/
CIPENSION NSSTf 7,100)
INTEGER*2 NSST
DIPENSION SMEAN(7)
DATA IENTRIDLETISTOPIXEQ/'ENTROUDLET., 'STOP ,'XEQ

C,'
DATA ISIMNIERASIPRT/'SIMN', 'ERAS','PRNT'/
UATA IOPT/ISTIM','FTIM' ,DELT' ,'PDEL'/,LETL/'L '/I15

CTR/'* o/
DATA IERRINIT,ISYS/'*ERR',OIINTTt,SYS I/

INTGERNCNTf/
DC 24 1=1,46

24 IFLAG(I)=0
IFLAG(47)=-1

1 STRT[M=O.0
FINTIM=l0. 0
DELTA =0 *311
PPRTEL=0.5
TIV'-=HFIX( ST-RTIM)
R TIM -.ST RTI M
NSSTC=O

2 CALL [CARD
SET=3
TF(IWRO(l).NE.IOLR),GO TO03
IF(IWRD(2).EQ.IENTR) GC TO04
1Ff (IWRD(2).EQ.INIT).ANoa IWRD(3).EQ.Isys)) CALL SETUP
IF(SET.EQ.4) GO TO 100
1Ff LIWRD(2).EQ.IERAS).AND. (IWRO(3) .EQ.MJOTJ ) CALL CLEA

CR
IF(SET.EQ.4) GO TO 100
IFf (IWRO(2).EQ.IXEQ).AN~o(IWRD(3).EQ.ISIMN)) GO TO 5
IF((IWRO(2).EQ.IPRT).ANO.(IWRO(3).EQ.MJDT) ) CALL PRNT
IF(SET.EQ.4) GO TO 100
IF(IWRD(2).EQ.ISTOP) GO TO099



278

GO TO (1,2,3,130),SET
3 WRITE(6,201) IASK,IASK,IDSH
201 FCRMAT(//,' ',A4,'ERROR',A4,'IMPROPERLY FORMATEDUNDEF

CI ED,OR MISSING COMMAND OR DATA CARD',A4,'SIMULATION T
CERPINATED')
GC TO 100

4 IF(IWRD(3).EQ.IDST) CALL STAT
IF(IWRD(3).EQ.IBST) CALL BULK
IF(IWRD(3).EQ.MJDT) CALL ENTER
GC TO (1,2,3,1JO),SET

5 IF(IFLAG(47).NE.1) GO TC 98
IF(lWRD(4).EQ.)) GO TO 21
IF((IWRD(4).NE.LETL).OR.(IWRD(5).NE.ISTR).OR.(IWRD(6).

CNE.IFLD)) GO TO 20
C

IF(IWRD(7).NE.1) GO TO 20
IF(FLC(1).LT.1.0) GO TC 20
IF(FLD(1).LE.4.O) GO TO 6
FLC1)=4.0
WPITE(6,203) IASK,IASK,IOSH

273 FCRMAT(//,' ',A4,'WARNING',A4,' ONLY 4 LOCAL OPTIONS A
CVAILABLE AT EXECUTION',A4,'LOCAL OPTION SPEC. ASSUMEC
CTC BE L*4')

6 NOPT=IFIX(FLDO())
CC 19 I=1,NOPT
CALL ICARD
DC 7 J=1,4
IF(IWRD(1).EO.IOPT(J)) GO TO 9
IF(IWRD(1).EQ.ICLR) GC TO 97

7 CCNTINUE
8 WRITE(6,204) IASK,IASKIOSH
2,4 FORMAT(//,' ',A4,'WARNING',A4,' INVALID OPTION CARO',A

C4,'PASSEO')
GC TC 19

9 IF((IWRD(2).NE.IEQL).OR.(IWRD(3).NE.IFLD).OR.(IWRD(4).
CNE.1)) GO TO 8

GC TQ(10,12,15,17),J
1I IF(FLD(1).GE.O. ) GO TC 11

WRITE(6,205) IASK,IASK,IOPT(J),IDSH
2,5 FORMAT(//,' ',A4,'WARNING',A4,' ILLEGAL VALUE SPECIFIE

CD FOR ',2A4, 'DEFAULT CPTION USEO')

GC TO 19
11 STRTIM=FLD(1)

GC TC 19



279

12 IF(FLD(1).GT.O.O) GO TO 13
WRITE(6,205) IASK,IASKIOPT(JIDSH
GC TO 14

13 FINTIM=FLD(1)
14 IF(STRTIM.LT.FINTIM) GO TO 19

WRITE(6,206) IASK, IASK,IDSH
206 FORMAT(//,' t,A4'WARNING',A4,' STIM HAS BEEN SPECIFIE

CD TO BE GREATER THAN FTIM',A4,'FTIM SET TO 2*STIM')

C
FINTIM=2.C*STRTIM
GO TO 19

15 IF(FLU(1).GE.O.001) GO TO 16
WRITE(6,205) IASKIASKIOPT(J),IDSH
GO TO 19

16 CELTA=FLD(1)
GO TO 19

17 IF(FLD(1).GE.3.O) GO TO 18
WRITE(6,205) IASK,IASK,IOPT(J),IDSH
GO TO 19

i8 PRTDEL=FLD(1)
19 CCNTINUE

GC TO 21
20 WRITE(6,207) IASK,IASK,IOSH
271 FORMAT(//,' 'tA4,'WARNING'tA4,' INVALID LOCAL OPTION S

CPEC.',A4,'ALL DEFAULT VALUES IN EFFECT')
C

21 WRITE(6,208) LIND,LIND
218 FCRMAT(' ',33A4)

WRITE(6,209) IASK,IASKIASKIASK,STRTIMFINTIFINTIM,DELTA,P
CRTCEL

209 FCRMAT(//,' ',A4,' BEGINNING EXECUTION ',A4,//,' ',A4,
C' VALUES OF LUCAL OPTICNS ',A4,//,1OX,'STIM =',F8.3,/,
C10X,'FTIM =',F8.3,/,10X, 'DELT =',F8.3,/,l0X,'PDEL =',
CF8.3,//)
WRITE(6,212) IASKIASK

212 FCRMAT(//,' ',A4,' VALUES OF SYSTEM PARAMETERS ',A4)
OC 25 1=1,35
IF(ITAG(I).EQ.0) WRITE(6,213) KNAME(I),PARM(I),ISTR

25 IF(ITAG(I).NE.3) WRITE(6,213) KNAME(I),PARM(1)
213 FCRMAT(1OX,A4,' =',I1O,A4)

OC 26 1=36,46
IF(ITAG(I).EQ.O) WRITE(6,214)KNAME(I),RPAR(I-35),ISTR

26 IF(ITAG(I).NE.O)WRITE(6,214) KNAME(I),RPAR(I-35)
214 FCRMAT(IOX,A4,' =',F14.4,A4)

wRITE(6,208) LINDLIND
PRTTIM=STRTIM+PRTDEL



280

RTIME=STRTIM
DC 300 KKK=1,25
IF(IDIST(KKK).EQ.GAUS) GO TO 301

3.C CCNTINUE
301 ICXGAU=KKK

CALL UNMIX(3,2,PARM(12),IWRT3)
100 .  WRITE(6,1100)
11iC FCRMAT(' MAIN WILL NOW CALL HLS FOR INITIAL J-TABLE SC

CAN')
1001 CALL HLS(1,0)
22 IF(RTIME.LT.PRTTIM) GO TO 23

CALL PRNT
PRTTIM=PRTTIM+PRTDEL

23 IPASS(6)=TIME
NSSTC=NSSTC+1
NSST(i,NSSTC)=TIME
NSST(2,NSSTC)=NJWM
NSST(3,NSSTC)=NFB(1)
SST(4,NSSTC)=IPASS(1C)

10l 3 IF(PARM(24)) 1013,1005,1010
1C%5 WRITE(6,111O) TIME
Ill. FCRMAT(' TIME = ',15,' MAIN TO CEC FOR NEW SCHED,NFBK'

1j,6 CALL CEC(2,0)
NSCHED=3

1:c9 WRITE(6,1160) TIME
1164 FORMAT(' TIME = ',15,' MAIN TO NFMAL')

CALL NFMAL(1,C,n)
I0C7 WRITE(6,12%? ) TIME
12,j FCRMAT(' TIME = ',15,' MAIN TO HLS FOR PROCESSOR ASN.,

CNFBK')
CALL HLS(2,O)
GC TO 1029

1::1 WRITE(6,1113) TIME
1113 FCRYAT(' TIME = ',15,' VAIN TO MAPREF')

CALL MAPREF
wRIT(6l12C) TIME

112.) FGRMAT(' TIME =',15,' MAIN TO CEC FOR NEW SCHEDULEFBK
L')
CALL CEC(2,0)
NSCHEC=0

1 -12 WRITE(6,1210) TIME
12i1 FORMAT(' TIME = ',15,' MAIN TO HLS FOR PROCESSOR ASN.,

CFBK')
CALL HLS(2,3)

1 ..29 NSST(5,NSSTC)=NJWM



281

NSST(6,NSSTC)=NFB(1)
NSST(7,NSSTC)=IPASS(10)

1C30 IF(IPASS(3).GT.0) GO TC 133
IF(NCNT.GT.0) GO TO 1031
NCNT=NCNT+1
IF(IPASS(1).GT.0) GO TO 1003
GC TO 1032

1C31 NCNT=O
WRITE(6,1400)

1400 FCORAT(' ****ERROR**** SCHEDULER HUNG UP, NO ACTIVE JC
CBS BUT'/ ' JOBS IN ICEC ARE NOT BEING SCHEDULED')
C

1032 CALL FEC(3,00,#0)
IF(IPASS(8).EQ.-1) GO TO 99
LLOW=(TIME+1q)/20
LHIGH=IPASS(8)
RTIME=FLOAT(LHIGH)
AN=RTIME
LHIGH=LHIGH/20
IF(LLOW.GT.LHIGH) GO TO 1710
CC 1705 KKK=LLOW,LHIGH
IUTL(1,KKK)=KKK*20
CC 1705 KK=2,6
IUTL(KK,KKK+100)=G

17.5 IUTL(KK,KKK)=O
171Z WRITE(6,1220) TIME,IPASS(8)
122Z FORMAT(' MAIN WILL NOW ADVANCE CLOCK FROM',16,' TO',I6

C)
TIE=IPASS(8)
CALL FEC(2,0,OC)
GC TO 1003

114, FORMAT(/,' MAIN WILL NOW CALL PEX, TIME=',I8)
1'33 CALL PEX(IDXGAU)
15.- FORMAT(10(2X,14))
15f5 FCRmAT(16(2X,I4))
151 . FORMAT(' IPASS(1-4), TIVE',5(2X,15|)

TIME =TIME+HFIX(DELTA)
RTIVE=RTIME+DELTA
IF(TIME.GE.0) GO TO 50
CALL RESET

53 IFiRTIME.LE.FINTIM) GO TO 1040
IF(IWRT3.EQ.1) CALL PRNT
WRITE(6,1520)

152k FORMAT('1')
WRITE(6,1525)

1525 FORMAT(7X,'JOB,3X,'IN ICEC',5X,'CMPLT',2X,'MIN PRCS',



282

C LX,'TARG TIME',2XACT PROS',/)

153(, FO4~MAT(6(4XI6))
LAN U M=0
LASUM=3
LASOR=O
LANMAX=
I RNUM=O
IRSUM=0
IRSQR=C

UC 375 KK=1,64
375 NEX(C(KK)=0

CC 420C KK=1,ISTCNT
WRITE(691530) I ISTAT(IXIKK),JX=1?6)
NEXC(ISTAT(1,KK))=NEXC(ISTAT(1,KK) )+1
ICI FF=I STAT 43, KK )-ISTAT( 5,KK)
IFIIIDIFF) 390,4C0,380

-A81. LANUM=LANUM+l
LASUM=LASUM+[DI FF
LASQR=LASQR+lD IFF*IOIFF
IF( IDLFF.GT.LAMAX) LAMAX=IDIFF
GC TO 400

39" IOIFF=-IOIFF
I R NU M =RN U M +
IRSUM=I RSUM+ID 1FF
IRSQR=IRSQR+IDIFF*IDIFF
IF( IDIFF.GT.IRMAX) IRMAX=IOIFF

4'> CU'JINUE
IF(LANUM.EQ.C) GO TO 405
~N L A= LAS U M/ LA NU M
LAVAR=( LASQR-2*MNLA*LASUM) /LANUM+MNLA*MNLA
WR ITE(6, 1560) LANUM,LAMAX,MNLA,LAVAR

156, FCRMAT(I NO. LATE JOBSMAX LATEIPEAN LATE,ANO VAR. ARE
C' ,4(3X,16))

4- 5 IF(IRNUM.EQ.0) GO TO 410
?MNIR=IRSUM/IRNUM
IRVAR=(IRSOR-2*MNIR*IRSUM)/RNU.+MNIR*MNIR
WRITE(b,157!5) IRNUM, IRAXMNIRgIRVAR

157. ' FGRMAT(/,' NO.E-ARLY JOBSMAX EARLY,MEANEVAR.AREI,4(3X,
2-16) )

411C l1IME=TIME
AR4VLM=FLOAT(ITIME)/FLCAT( ISTCNT)
WRITE (6, 1582')) 1 STCNT,ARRVLM

156b) FCNkMAT(/,' TL.NO.JOBS RUN&MN.INTCMP.TIME 4RE",3X,16,3X
CF Ic.2)

()RIGN~ P

opPDORQUAZIS



283

WRITi?(6, 1585)
1585 FORMAT(//,' RUN FREQUENCY FOR EACH JOB')

WRITE(691590)
1590 FORMAT(/t3X,'JOB LOC-*,3X,'NO. RUNS',6Xv'LCACCSfq6X,

C 'NPACCS',6X,'NTACCS',9X,'ODO)
C
TOMO=%C.O
LDAT=C
NPAT=C
NTAT=O
GO 415 KKK=I,NJOBER
LDACCS=0
NPACCS=C

CALL UNMIX( 1190tINDPtMMS)
INL=JM( 279KKK)
CALL UNMIX(ll1lO, lNDITMR)
CALL UNMIX(19,1NDPIRES)
CALL UNMIX(2,1,INDlINT)
CALL UNMIX(14*13,IN!,ILOAD)
CALL UNMIX(592,ilNU,1ND53)
IF(LOAD.EQ.1) LOACCS=LCACCS+JM( 18,KKK)
IF(IRES.EQ.0) GO TO 411
IF(NEXC(KKK)) 4129412,4121

411 LCACCS=LDACCS+IFIX(RPAR(8)*(IIMS*PARM(14)*NEXC(KKK)))
412 IF(INT.NE.1.AND.IND53t'E.1) GO TO 413
4121 LD-ACCS=LDACCS+IFIX(RPAR(8)*(MMS*PARM( 14)))
413, JPACCS=JM(9tKKK)+JM(15,KKK)

!NPACCS=JPACCS*NEXC CKKK)
IF( INT.EQ. 1) NPACCS=NPACCS+JM( 18,KKK)
IF([TMR.EQ.0) GO Te 414
LOACCS=3*LDACC S
NP ACCS=3 *NPA CC S

414 NTACCS=LDACCS.-NPACCS
LIAT=LDAT+LDACCS
NPAt=NPAT+.NPACCS
NTAT=NTAT+NTACCS

RRUN=RTIME/MIT
DLDS=1*IRES+ ( -IRES) *RRUN
LMu=(RPAR(8)*DLUS*PAR-M(14)*?'PS+RRUN*JPACCS)*(1+2*ITMR)

*TCIMD=TOMD+DMD
WRITE(6t1595) KKK#NFXC.;(KKK) ,LDACCSNPACCSNTACCS,D'O

1595 FURJMAT(4X, 14,BX,I't6X,[8,4X,18,4X,18,4XF8.O)
415 CCNTINUE

WiRITE(6, 1596) LCATNPATtNTATTDMO



284

1596 FORMAT(9X,'TOTALS',7X,3(lX,IllIh2XFIOF0)
WRITE(6,1600)

16,0 FORMAT(//,1CX,'NEW SCHEDULE STATISTICS')
WRITE(6,16S5)

1605 FORMAT(/,6X,'TONS',4X,'NJWMS,7X,'NFBS,4X,'MSPACES I,
C 6X,'NJWME',7X,'NFBE,4X,'MSPACEE')
C
CC 416 IX=1,7

416 SMEAN(IX)=0.0
1610 FORMAT(7(IX,19))

00 417 KKK=1,NSSTC
IF(KKK.EQ.1) GC TO 4161
SMEAN(1)=SMEAN(1)+NSST(1,KKK)-NSST(1,KKK-1)

4161 CO 4163 KKX=2,7
4163 SMPAN(KKX)=SMEAN(KKX)+NSST(KKXKKK)

WRITE(6,1610) (NSST(IX,KKK),IX=1,7)
417 CCTINUE

UC 4171 KKX=1,7
4171 Sm'AN(KKX)=SMEAN(KKX)/NSSTC

WRITE(6,4175) SVEAN
4175 FC A4T(7(1X,F9.4))

WRITE(6,1535)
1535 FOkAT(/,10X,'CUMULATIVE UTILIZATICNS AT 20 STEP INTER

CVALS',/)
WRITE(6,1540)

154' FONMAT(6X,'TIME',13X,'CPU' ,17X,'IOP',17X,'MBW',
C 16XOMSPACE',1IX,'IN OUEUE')

WRITE(6,1542)
1542 FCRMAT(16X,'LONG',5X,'SHORT',6X,*LCNG',5X,'SHORT',

C 6X,'LONG',5X,'SHORT',6X,'LONG',5X,'SHORT',
C6X,'LCNG', 5X,'SHORT')
C

INI'X=TIME/20
DC 42. KK=1,INDX
WRITE(b6,1544) IUTL(1,KK.),((IUTL(IX,KK),IUTL(IX,KK+IOG)

C),IK=2,6)
1344 FCPMAT(11(4X,16))
421: CCNTINUE

GC TO 1
118- FORMAT(' MAIN NOW CALLS FEC FOR RMVL OF LEAD ENTRIES,l

C :. 4.')
1042 CALL FEC(2,0,C,0)
5 F F(IPASS(6)+1G-TIME) 521,1030,1030
5'1 IF(2*IPASS(0I ).GE.PARM(17).AND.2*NJWM.GE.IPASS(2)) GC

CTO 22

ORIGINAL PAGE IS

OF POOR QUALITY



285

IF(BCUU-RPAR( 1 )*ACUU) 505,532,502
502 IF(2*IPASS(7)-PARM(23)) 1030,1030,505
5U5 IF(BPUU-RPAR(1)*APUU) 510,507,5C7
507 IF(2*IPASS(9)-PARM(19)) 1330i10309510
512 IF(IPASS(11).GT.O.AND.4*IPASS(10).GE.PARM(17)) GO TO 2

C2
IF(NJWM-IPASS(11).GT.O.AND.4*IPASS(1O).GE.PARM(17)) GO

L TO 22
IF(IPASS(1)-IPASS(2)-NJWM+IPASS(11).GT.0) GO TO 22
GO TO 1030

98 WRITE(6,210) IASK,IASK,IOSH,IDSH
21C FCRMAT(//,' *,A4,'ERROR',A4,' ATTEMPT TO EXECUTE SIMUL

LATION BEFORE INITIALIZING SYS. PARAMETERS',A4,'EXECUTI
LCN SUPPRESSED6,A4,'SIMULATION TERMINATED')

GC TC 100
97 WRITE(6,211) IASKIASK,IDSH,IDSH
Zi1 FORMAT(//,' ',A4,'ERROR',A4,' CCMMAND CARD ENCOUNTERED

C',A4,'PROBABLE CAUSE IS MISSING LOCAL OPTION CARDS',A4
C,'SIMULATION TERMINATED')

GO TG 10)
99 WRITE(6,22) IASK,IASK
2t2 FORMAT(//,' '*A4,'ENO CF SIMULATION',A4)
1.-. WRITE(6,999)
999 FORMAT('l)

STOP
EN



286

SUBIROUTINE SETUP
CCMMON/BLK1/ [ASK, IDSHLIND(33 ),LJNA(33),IBLK, IDLR, [EQ

CL, I 1OST
CCM'MON/BLK1/ INAME,IDATAMJDTIlBST,IEX[T,TFLD
CCNMMON/BLK2/ IWRD(I00)tFLD(5O)
CCMMON/BLK5/ SET
CCvMUN/B.LK12/PARM( 35)
CCYMON/BLK13/RPAR( 11)
CC!VMON/BLK14/IFLAG(47),ITAG(46)
CCt"MON/BLK15/KNAME(46)
CCMMON/BLK16/IBWCTR(24),ICEC(5,40),ICECS,[CPU(10),IPAS

cs(2K)) , IFECS,IFECC40,4) ,IPROS(16) ,ISAVE(3,3) ,IVAL
COV( 10),MALC(256,5), MALCS,MAS(24),MAVL(128,5b.MAVL
CS,,vODNM(24) ,MTP1(24) ,NA(24)t NAA(24),NAB,NAG,NA
CML(40),NBLK(128),NFB(3),NJWM,NSCHEO, NREQ(4
CO,2 4) ,NTP( 24) ,NTR( 24) ,NUCA(24)
C
INTEGER PARM
INTEGER*2 IBWCrRaICEC,ICECSICI'uIPASITFECS,IFEC,IPRO

CS, I SAVE,IVALCV,MALCtMALCStMASM4VLMAVLS,MOCD
CNV,MTP1 ,NANAA,NAB, NAGNAML,NBLKNFBTNJWM,NSCHED,
CNJR 10, NTP ,NTR ,NUCA
TNTEGER*2 HFIX, IFLAG,I,JITAGSET
CCNwMUNfBLK17/ ISTCNT,ISTAT(6t4O')),IUTL(6,2CO)
INTEGER*2 ISTAT,IUTL
CATA ISTR,IEND,IERR/I* ltfEND *,'1*ERRI/
CCTVMON/BLK1.8/RUTL( 15)
WRNITE(6,201) LIN0,LIND

2tJ1 FCqMAT(' 1,33A4)
WR[TE(6,202) IASK91ASK9IASK, [ASK,

2-i2 FCRMAT(//,$ 1,44,0 BEGINNING SYSTEM INITIAL[ZATICN 1,A
(-49//,' 19A491 INPUT PARAMETERS 1,A4i)

CC 1 1=1,46
I TAG( I)=0
(ALL ICARO
IF(C(IWRD( 1).*EQ. ISTR) .ANO. (IWRD( 2).*EQ. [END)) GO TO 12
1F(IW~RD(1).EQ.ICLR) GO TO 16
CG 11 1=1#46
TF([WRD(l).NE.KNAME(I)) GO TO 11
[FCC IWRDC2).NE.IEQL).CR.CIWRD(3).NE.[FLD).OR.CIWRD(4).

CNE.1)) GO TO 17

IFLAG I )=i
ITAG( 11=1



287

IF( I.LT.36) PARM( I)=FLO(l)
IF( I.GF.36) RPAR( I-35)=FLD(1)

11 COTITNUE
GC TO 10

12 UC 2 I=1924
[B1WCTR( I)=O
MAS I )=PARM(l7)/PARM(2G)
MOLNM( I)=3
MTPL (I)=,)
NAt!)=0
NAA( I)=PARM(2)/PARM( 15)
NTP( I)=0
NTR( I)=C

DO1 2 J=1940
NR'O7(JvI)=D
[DC 3 11C1
IPASS( I)=O
IPASS(1+10) =0
ICPU( I)=)
IVALOV( I)='"

2CCNTINtJE
CG 3,3X 1=193
CO 3Cr.) J=193

3C. ISAVE(I#J)=O
CC 31C I1,1l6

'DO 4 I=1,4',
CC 5 J=1,5

5 ICEC.(JIJ=Q
UO 6 J 1 v4

4 NAML(I)=Q
CDC 8 1=1#128
NBLK( I) =)
CC 8 J=1,5
rAVL( 1,J)=j

8 MALC((1+1Z8)#J)=3
CCO 9 1=1,3
NFB( I)=C

9 CC;NTlNUE
[c(- 9": 1=1,15

IPASS(7 )=PARM( 23)
IPASS(9)=PARM( 19)



288

IPASS(10)=PARM(17)
ISTCNT=O
ICECS=-1
IFECS=-1
MALCS=-1
MAVLS=1
MAVL(1,1)=-1
MAVL(1,2)=-1
MAVL(1,3)=0
MAVL(11,4)=-1
MAVL(1,5)=PARM(17)
NF0i(1)=1

NAG=G
NDLN=0
NJWM=C
NSCHED=O
IF(IFLAG(47).NE.-1) GO TO 14
J=.
CC 13 I=1,46

i3 IF(IFLAG(I).EQ.O) J=l
IF(J.EQ.1) GO TO 18

14 SET=2
IFLAG(47)=1
RETURN

16 WRITE(6,203) IASK,IASK,IDSH
2f3 FC MAT(//,' ',A4,'ERROR',A4,' COMMAND CARD ENCOUNTERED

C CURING SYSTEM INITIALIZATION',A4,'SIMULATION TERMINAT

CEC)
SET=4
RETURN

17 WRITE(6,204) IASK,IASKvIDSH
224 FCRMAT(//,' ',A4,'ERRCR',A4,' INVALID SYSTEM SPEC. CAR

CC JR ILLEGAL SPEC. VALUE',A4,'SIMULATION TERMINATE;')

C
SET=4
RF-TURN

18 WRITE(6,205) IASK,IASK
2,5 FERMAT(//,' ',A4,'ERROR',A4,' THE FOLLOWING PARAMETERS

C ARE UNDEFINED')
C
CC 19 I=1,46

19 IF(IFLAG(I).EO.0 ) WRITE(6,236) IDSH,KNAME(1),IDSH

2. 6 FLRMAT(/,' ',3A4)
SET=4
RETURN



289

END



290

SU~iROUTINE ICARO
CCfoMCN/BLK2/IWRD(100) ,FLO(50)
INTEGER*2 K(80)v,SP(6)/'+','-',','t ,' ',*',''/sMAXA/u

CZ'/qMINN/10'/,MAXN/'9'/qMINS/' 'I, IIWNF,ILITKl9N0G
CT, 91SET
DATA IFLDIERR,ICMTLICMT2/'*FLD','*ERR','C off* I

C/
1 CC 2 1=1,1':0

CC 3 1 =1,95 0
3 F Lt()=O.O

41l'C =0I

READ(59201) K
2, i FC,*MAT(8OA1)

wRITE(6,202) K

5 C =I C+ 1
IF( (IWRD(l1).EQ.ICMT1) .AND.(CIWRO(2) .EQ.ICMT2)) (;O TC 1
IF(IC.GT.8G) RETURN

6. IF(KCIC).FO.ISPC4)) GC TO 5
IFCK(IC).LE.MAXA) GO TO 8
lF((K(IC).GE.M1NN).ANo.(K(IC).LE.MAXN)) GO TO 13
CC 7 1=1,3
IF(K(IC).EQ.ISP(I)) GC TO 13

7 CC'\TINUE
IF((IC.EO.8c3).AN.(K(IC).EQ.1SP(5))n GO TO 4
IW D(IW)=K(IC)*(256**2)+ISP(4)
IW= IW+1
GC TO 5

8 IL=.,
11=8

9 lF(IC.GT.80) RETURN
I1W-OC1W)=IWRD(IW).-(K(IC)/256)*(256**(4-TL))
IF(IC.EQ.80) GO TO 10
IF(K( IC+1) .GE.MINS) IT=5
IF(IL.EQ.4) GO TO 12
IF(IT.EQ.5) GO TO 10
1c=IC+1
IL=IL+l
GC TO 9
IF((4-IL).E'Q.C2) GO TO 12
KI =4-IL
CC 11 1=1,K1



291

11 IWRD(IW)=IWR0(IW).(ISP(4)/256)*(256**(4-IL-I,)'
IWRO( IW)=I WRO( IW)-(256**(4-lLJ)

GO TO 5
12 IWRD(IW)=IWRD(lW)-1

IW=[W+l
IF(Ir.EQ.5) GO TO 5
IC=:IC+1
GO TO 8

13 IF(IW.LT.3) GO TO 14
IF(IwRO(IW-2).EQ.IFLO) IW=IW-2

14 IWRD(IW)=IFLO
Iw=Iw+1
fCGT=C
I UE C =.;
SIx3N::i.
FCTR=l. -)
IF(K( IC).EQ. ISP(2) ) SIGN=-1.O
IF( (K(IC).EQISPul)).OR.(K(uC).EoISP(2) )) IC=1C41
IF(IC.GT.80) GO TO 19

15 IF((K(IC).GE.MINN).AND.(K(IC).LE.MAXN)) Go To 16
IF(K(IC).EO.ISP(3)) GC TO 17
IFINCGT.EQ.0) GO TO 19
IF(EK(IC).E-Q.ISP(4) ).OR.dK(IC).EQ.ISP(6))) GO TO 18
IF((K(IC).EQ.ISP(51).ANO.([C.,EQ,80)) GO TO 4
"C TO 19

16 FLO(NF)=FLD(NF)*10j.3+FLbAT((K(IC)+4132),25
6 )

IC=:ICfl
IF( IC.GrT.80) GO TO 17
NCGT=NDGT+ 1
WO TO 15

17 IF(IDEC.GT.O) GO TO 19
[C=IC+1
ICEC::IC
IF(IC.GT.8-0) GO TO 18
GO TO 15

18 IF(IDEC.GT.0) FCTR=lC.O**FLOAT(IC-IOEC)
FLC(NF)=:SIGN*FLID(NF) /FCTR
NF=NF+l

Ih=IW+1
GC TO 5

19 IWkD(IW)=IERR
2i.. IF(K(8ZI).N-E.ISP(5)) RETURN

READ(592Cfl K
CC TC 2r

01Pzf.
04A-P

Q& Ql S



293

SUBROUTINE BULK
COMON/BLK1/IASK,IDSH,LIND(33),LINA(33),IBLKl0LR IEQL

C,ICST
COMMON/BLK1/INAME,IDATAMJDTIBSTIEXITIFLD
CCMMON/BLK2/IWRD(100),FLD(50)
CCVMON/BLK3/ IDIST(25),F(25,41),NDIST
COMMON/BLK4/NAME(75,8)tDATA(75,9),NJOB
COMMON/BLK5/ISET
DIMENSION IAPX(9),FMAX(9),FMIN(9)
INTEGER*2 NDISTNJOB,ISET,IJOBlJN,M
REAL NA/' NA '/
DATA ISTR,ICMA,IEND,IBLC/'* ',, ','ENC ','BLOC'/
DATA IFX,IFN,ESEED,IFCN/'FMAX ,'FMIN','SEED'e'FCTN'/
DATA IERR/'*ERR'/
ISC=1
NJOB=C
IJOB=1
CC 1 1=1,75
CC 2 J=1,B
NAME(IJ)=3

2 CCNTINUE
I CONTINUE
3 WRITE(6,201) LINA
201 FORMAT(' ',33A4)

WRITE(6,202) IASK,IASK
2 2 FC;MAT(/,' ',41X,A4,' JOB GENERATOR INPUT PARAMETERS '

C,A4)
4 NJOB=NJOB+1

CALL ICARD
IF(IWRD(1).GT.O) GO TO 11
IF((IWRO(1).NE.INAME).CR.(IWRD(2).NE.IEQL)) GO TO 9
IF(NJOB.GT.75) GO TO 10
N=3
IV=1
IF(IWRD(N).NE.ISTR) GO TO 6
NAPE(NJOBM)=IWRD(N)

5 N=N+I
6 M=v+l

IF([WRD(N).GE.1) GO TO 8
IF(M.GT.8)-GO TO 37
N4VE(NJOB,M)=IWRD(N)

IF(IWRD(N).EC.O) GO TO 7
IF(IWRD(N).NE.ICMA) GO TO 8
GC TO 5



294

7 IF((IWRD(1).EO.ISTR).AND.N.EQ.4)) GO TO 9

IF(N.EQ.3) GO TO 9
GC TO 4

8 WRITE(6,203) IASK,IASK,IDSH
203 FORMAT(//,' ',A4,'ERROR',A4,' IMPROPER NAME,MISSING CO

CMMAOR INVALID DATA ENTRY',A4,'SIMULATION TERMINATED')

C
ISET=4
RETURN

9 WRITE(6,204) IASK,IASK,IDSH
204 FORMAT(//,' ',A4,'ERRORtA4,' PARAMETER DEFINITION CAR

CD IS INVALID,MISSING,OR OUT OF ORDER6,A4,'SIMULATICN T

CER INATED')
ISET=4
RETURN

10 WRITE(6,205) IASK9IASK,IDSH
205 FORMAT(//,' ',A4,'WARNING',A4,' ATTEMPT TO GENERATE MO

CRE THAN 75 JOBS',A4,'EXCESS ENTRIES IGNORED')

GO TO 4
11 IF(IWRD(1).NE.IDLR) GO TO 100

IF((IWRD(2).EQ.IEXIT).AND.(IWRD(3).EQ.IBST)) GO TO 34

IF((IWRD(2).EQ.IEND).AND.(IWRD(3).EQ.IBLC)) GO TO 12

100 WRITE(6,206) IASK,IASK,IDSH
2.,6 FORMAT(//,' ',A4,'ERROR,A4,' INVALID EXIT, INVALIC EN

CC BLOC, OR ATTEMPT TO EXECUTE NEW COMMAND BEFORE EXIT
CFROM BST ROUTINE',A4)
WRITE(6,207) IDSH

207 FORMAT(' ',A4,'SIMULATION TERMINATED')
ISET=4
R TURN

12 CALL ICARD
NJCB=NJDB-1
IF((IWRD(1).NE.ISEED).CR.(IWRO(2).NE.IEQL)) GO TO 13

IF((IWRD(3).NE.IFLO).OR.(IWRD(4).EQ.IERR)) GC TO 8

IF( IWRD(4).GT.1) WRITE(6,208) IASK,IASK,IDSH
208 FORMAT(//,' ',A4,'WARNING',A4,' MORE THAN 1 VALUE HAS

CBEEN SPECIFIED FOR SEED VARIABLE',A4,'EXCESS ENTRIES I

CGNCRED')
ISO=IFIX(FLD(1))
CALL ICARD

13 IF((IWRD(1).NE.IFCN).OR.(IWRD(2).NE.IEQL)) GO TO 9
N=3
M=1

14 IF(M.GT.9) GO TO 15
IF(IWRD(N).GE.O) GO TO 8



295

IAPX(M)=IWRD(N)
N=N+l
IF(IWRD(N).EQ.O) GO TO 16
IF(IWRD(N).NE,ICMA) GO TO 8
N=N+1
M=Vt* +1
GC TC 14

15 WRITE(6,209) IASKIASKIDSH
209 FORMAT(//,' ',A4,'WARNING',A4,' MORE THAN 9 DIST. APPR

COXI M ATION CURVES SPECIFIED',A4,'EXCESS ENTRIES IGNORED
C')

16 IF(M.LT.9) GO TO 21
CALL ICARD
IF(TIWRD(1).NE.IFX).OR.(IWRD(2).NE.IEQL)) GO TO 9
IF(IIWRD(3).NE.IFLD).OR.(IWRD(4).EQ.IERR)) GO TO 8
IF(IWRD(4).LT.9) GO TO 22
IF(IWRD(4).EQ.9) GO TO 17
WRITE(6,213) IASKIASK,IDSH

21i FORMATt//,' ',A4,'WARNING',A4,' MORE THAN 9 MAX. OR MI
C'. PARAMETER VALUES SPECIFIED',A4,'EXCESS ENTRIES IGNO
ARED')

17 CO 18 1=1,9
IF(FLO(I).LT.0) GO TO 9
FMAX(I)=FLD(I)

18 CCNTINUE
CALL ICARD
IF((IWRD(1).NE.IFN).OR.(IWRD(2).NE.IEQL)) GO TO 9
IF((IWRD(3).NE.IFLD).OR.(IWRD(4).EQ.IERR)) GO TO 8
IF(IWRD(4).LT.9) GO TO 22
IF(IWRD(4).EQ.9) GO TO 19
WRITE(6,210) IASKtIASK,IDSH

19 CC 20 1=1,9
IF(FLD(I).LT.O) GO TO 9
FMIN(I)=FL0(1)

20 CCNTINUE
GC TO 23

21 WRITE(6,211) IASK,IASKIDSH
211 FORMAT(//,' ',A4,'ERROR',A4,' FEWER THAN 9 DIST. APPRO

CXIMATIONS SPECIFIED',A4,'UNABLE TO GENERATE JOB PARAME
CTERS')
ISET=4
RETURN

22 WRITE(6,212) IASK,IASK,IDSH
212 FORMAT(/,' ',A4,'ERROR',A4,' FEWER THAN 9 MAX. OR MIN.

C PARAMETER VALUES SPECIFIED',A4,'UNABLE TO GENERATE J
LOB PARAMETERS')



296

1 SET=4
RETURN

23 00 24 I=199
DC 25 J=1,NDIST
IF(ICIST(J).EQ.IAPX(I)) GO TO 26

25 CCNTINUE
WRITE(6,213) IASKIASKIAPX(I) ,IDSH

213 FORMAT(/, 10,AERROR',A4,1 UNABLE TO LOCATE 19A490'
CCN STAT. DISTRIBUTION TABLElA4,'UNABLE TO GENERATE JO
C83 PARAMETERS$)
I SET=4
RETURN

26 SIMALL=F(J92)
BIG=SMALL
DO 27 K=3921
IF(F(JK) *LT.SMALL) SMALL=F(J,K)
IF (F(JK).GT.BIG) BIG=FIJK)

27 CONTINUE
SCALE=FMAX (I)
IF(BIG.NE.SMALL) SCALE=(FM4X(I)-FMIN(I))/(BIG-SMALL)
1)0 29 K=IJCBvNJOB
IY=I SD2*65539
1F(1Y.GT.0) GO TO 28
1V1 V+2147483647+1

2 8 YFL=FLOAT(IY)*.4656613E-9

Ii,,10X=IF IX( 1. 999*YFL )+2
I].'ATA(KI)=FMIN(I)+SCALE*(F(JINOX)-SMALL)

IFC( I.GE.1).AND.(I.LE.5)) OATA(KI)=FLOAT(IF[X(DATA(Kq
CM))

31 IFt (NAME(K,1) .NE.ISTR).AND.( I.EQ.7) ) DATA(KI )=NA
II((NAME(K,1k.EQ.ISTR).AND.UI.EQ.8)) UATA(KI )=NA

29 CCNTINUE
24 CCNTINUE
214 FCRMAT{I//,' 4,44t' CCMVtON STATISTICS JOB BLOCK 1,A4)
215 FfNIMAT(/, ' 1,A4,'JOB '.,2A4,3X,'EP=',F7.,1ZJX, 'TMR='tF7

O.K,/,12oX ,'CR=' ,F7.,2',10X,'I-O=l9F7.09/,20X,'Nl=',F7
C.C,5X,'1-0 DIST=',2XA4,/, 19X, 'MI)(=' 3XF4.2,11X,'RR=I

21.6 FORMAW( PREDECESSORS',5(2X,A4))
217 FCRMAT1/,f #,A4,lJOB ',2A4,3X,QEP=',F7.O,1OXt'TMR=,9F7

C.,.,/p2C0X ,'CR=' ,F7.O,1JX,'I-O=' ,F7.O,/,20X,'N1',IF7

C. tX 10 IT '2 ,4 / 1X I X= ,X F . , l t R=



WRITE(6,218) IDSH IAPX
218 FORMAT(/,' DISTRIBUTICN APPROXIMATIONS USEDOA4,2X,'EP

C-- ',A4,9X, 'TMR--,A4,/,39X,'CR-- ',A4,9Xe'I-O-- ',A4
C,/39X,'NI-- *tA4,9X,'IX-- ',A4,/,39X,'RR-- 'PA49X I'
CIAT-- ',A4,/,38X,'DVT-- ',A4)
WRITE(6,219) IDSHIOSH

219 FORMAT(/,' ',A4,'END OF JOB BLOCK,A4,/)
WRITfE6,201) LIND
IJCB=NJOB+1
GO TO 4

34 WRITE(6,999)
999 FORMAT('L1)

NJOB=NJOB-1
WRITE(6,201) LINA,LINA
kRITE(6,220) IASK,IASK

22' FORMAT(//,48XA4,' CCMPLETE RULK STORAGE TABLE ',A4,//
C)
WRITE(6,201) LINO
CO 36 I=1,NJOB
IF(NAMF(I,L).NE.ISTR) GC TO 35
WRITE(6,215) IDSH,NAMEII,2),IDSH,(DATA(IJ),J=1,5),NAM

CE(I,3),(DATA(ItJ),J=6,9)

WRITF(6,216)(NAME(IJ),J=4,8)
GC TC 36

35 hRITE(6,217) IDSH,NAME(I,2),IDSH(CATA(IJ),J=1,5),NAM
CE(I131,(DATA(IJ),J=6,9)
C
WRITE(6,216)(NAME(IJ),J=4,8)

36 CONTINUF
WRITE(6,221) IDSHIOSH

221 FORMAT(//,' ',A4,'END OF BS;T',A4,//)
WRITE(6,201) LIND,LINA,LINA
ISET=2
WRITE(6,999)
RETURN

37 WRITE(6,222) IASKIASK,NAMEINJOB,2),1DSH
222 FORMAT(//,' ',A4,'WARNING'9A4,' ATTEMPT TO ENTER MORE

CTHAN 5 PREDECESSORS IN PRED. FIELD OF JOB 't2A4,'EXCES
CS ENTRIES IGNORED')
GC TC 4
ENP



298

SUBROUTINE STAT
CO MON/BLK1/IASKtIDSHLIND(33),LINA(33),IBLKIDLRIEQL

C,IOST
CCMMON/BLKL/INAME,IDATA,MJDT,IBST,IEXIT,IFLD
COMMON/BLK2/IWRO(10O),FLD(50)
COMMON/BLK3/ IDIST(25)F(2525,41),NDIST
COMMON/BLK5/ISET
INTFGER*2 NDISTI,J,K,ISET,L
DATA IERR/'*ERR'/
00 1 I=1,25
IDIST(I)=O
CO 1 J=1,41
FfI,J)=G.*

1 CONTINUE
NDIST=1

2 IF(NIDIST.GT.25) GO TO 12
13 CALL ICARD

IFIIWRD(1).GT.0) GO TO 10
IF((IWRO(1).NE.INAME).CR.(IWRD(2).NE.IEQLi) GO TO 8
IFIIWRD(4).NE.O) GO TO 8
IF(IWRD(3).GT.O) GO TO 9
IDIST(NDIST)=IWRD(3)
CALL ICARD
IFf(IWRDI1).NE.IDATA).OR.(IWRD(2).NE.IEQL)) GO TO 8
IF((IwRD(3).NE.IFLD).OR.(IWRD(4).EQ.IERR)) GO TO 9
K=IWRC(4)
IF(K-41) 3,5,7

3 WRITE(6,201) IASK,IASK,IDIST(NOIST),IDSH
201 FORMAT(//,' ',A4,'WARNING',A4,' FEWER THAN 41 DATA POI

CNTS HAVE BEEN SPECIFIED FOR ',2A4,'DEFAULT VALUE=0.O')
C

5 CO 6 I=1,K
FINDIST,I)=FLD(I)

6 CCNTINUE
NDIST=NDIST+1
GC TO 2

7 WRITE(6,2Z2) IASK,IASK,IDIST(NDIST),IDSH
2'2 FORMAT(//,' ',A4,'WARNING',A4,' MORE THAN 41 DATA POIN

CTS HAVE BEEN SPECIFIED FOR ',2A4,'EXCESS POINTS IGNORE
CC')
K=41
GO TU 5

8 WRITE(6,203) IASK,IASK,IDSH
2.3 FCRMAT(//,' ',A4,'ERROR',A4,' IMPROPERLY FCRMATED OR M

CISSING NAME OR DATA DEFINITION CARD',A4,'SIMULATION TE

RIGINAL

-pool QUAL1



299

CRMINATED')
ISET=4
RETURN

9 WRITE(6,204) IASKvIASKtIDSH
204 FORMAT(//,' ,fA4,'ERROR',A4,' IMPROPER DISTRIBUTION NA

CME OR ERROR IN DATA FIELD'tA49,SIMULATION TERMINATED')
C
ISET=4
RETURN

1C IFIIWRD(1).NE.IDLR) GO TO 11
IF((IWRD(2).NE.IEXIT).OR.(IWRD(3).NE.IDST)) GO TO 11
NDIST=NDIST-1
00 102 I=1,NDIST
00 102 J=1,NDIST
IF((IDIST(I).NE.IDIST(J)).OR.(I.EQ.J)) GO TO 102
WRITE(6,207) IASK,IASK,IDIST(J),IDSH

2C7 FCRMAT(//,' ',A4,'WARNING',A4t' DIST. NAMED ',A4,' HAS
C BEEN ASSIGNED MORE THAN ONE SET OF DATA POINTS',A4,'F
CIRST SET USED')
K=J+I
DO 101 L=K,NDIST
ICIST(L-1)=IDIST(L)
DO 171 M=1,41
F((L-1),M)=F(LM)

1.11 CONTINUE
NCIST=NDIST-1

1c2 CCNTINUE
ISET=2
RETURN

11 WRITE(6,2 '5) IASK,IASKtIDSH
2.:5 FORMAT(//,' ',A4,'ERROR',A4,' INVALID EXIT OR ATTEMPT

CTO EXECUTE NEW COMMAND BEFORE EXIT FROM DIST ROUTINE',
CA4,'SIMULATION TERMINATED')
C

ISET=4
RETURN

12 WRITE(6,206) IASK,IASK,IDSH
2C6 FORMAT(//,' ',A4,'WARNING',A4,' ATTEMPT TO ENTER MORE

CTHAN 25 DISTRIBUTIONS CN STAT. TABLE',A4,'EXCESS ENTRI
CES IGNORED')

GO TU 13
END



300

SUBROUTINE PRNT
COMMON/BLK1/ IASKIDSH,LIND(33),LINA(33),IBLKtIOLR,IEQ

CL,IOST
COMMON/BLK1/ INAME,IDATAMJDTtIBST,IEXIT,IFLD
CCPMON/BLK3/ IOIST(25),F(25,41),NDIST
CGMMON/BLK5/ SET
COMMON/BLK6/ MNAME(8,64)
COMMON/BLK7/ JM2(27,64)
COMMON/BLKl1/ RTIME
INTEGER*2 SET,JM2tMIX,IP,IOSHEPMREQtNDIST,KYISUMI

C,J,K,L,M
DIMENSION NBITS(4),IVALOV(10),KY(14)
INTEGER*2 IVALOV
DATA ISTR/'I '/
WRITE(6,999)

999 FORMAT('1')
WRITE(6,201) LINA
'WRITE(6,216) IASK,RTIME,IASK

216 FORMAT(/,' ',A4t' TIME =',F8.3,A4,/)
WRITE(6,231) LINA,LINA

201 FORMAT(' ',33A4)
WRITE(6,202) IASK,IASK

2 )2 FORMAT(/,48X,A4,' MAIN JOB DESCRIPTION TABLE ',A4)
00 1 I=1,64
IF(MNAME(2,I).NE.0) GO TO 2

1 CC~TINUE
WRITE(6,203) IDSH,IDSH

2"3 FORMAT(/,' ',A4,' NO JOBS ON MJDT'tA4,/)
GC TO 15

2 WRITE(6,1930)
Iw FORMAT(/,1iX,'STATUS WORD BITS RIGHT TO LEFT'/,

C 1OX,' I READY',11X,' 2 INITIATED',7X,' 3

C WAITING CPU'/, 10X,' 4 WAITING IOP',5X,' 5
GWAIT MEMORY',5X,' 6 IN HOLD'/, 1lX,' 7 PREEMPTED

C',7X,' 8 "ODE,CPU/IOP',4X,' 9 PERIODIC'/, ICX,'I
C- RESIDENT',8(,'I S.IMPLEX/TMR',5X,'12 WAIT I/O CCM

CP.'/, 10X,'13 IN IFEC',9X,'14 LOAD',12X,'15 NOT USE

LC/, 1OX,'16 NOT USED')

C 14 I=1,64
IF(MNAME(2,I).EQ.J) GO TO 14
WRITE(6,204) 10SH,MNAME(2,I),IDSH,I

2,4 FCRMAT(/,' ',A4,' JOB ',2A4,3X,'LOCATION = ',12)

ISUM=O
00 4 J=1,4



301

IF(JM2(J+.,I)) 4,4,40
4 % ISUM=iSUM+1

KY(ISUM)=JM2(J+1,I)
4 CONTINUE

N=1
4-5 J22=JM2(22,I)

NL=N-1
CALL UNMIX(NNL,J22,IND)
IFIND) 430,430,410

41; 00 415 J=1,10
415 IVALOV(Ji=O

CALL OVFLMG(ItItNtIVALOV,10)
CC 425 J=1,10
IF(IVALOV(J)) 425,425,420

42. ISUM=ISUM+1
KY(ISUM)=IVALOV(JI

425 CONTINUE
43 . GO TO (5,8),N
5 IF(ISUM.EQ.O) GC TO 6

WRITE(6,205)
2 > FORMAT(/,2)X,'PREDECESSOR/LOCATION')

WRITE (6, 2 1,)( (MNAME (2,KY(J)),KY(J)),J=1,ISUM)
212 FCRMAT(20X,4(A4, /',12,2X))

GO TO 601
6 WRITE(6,213) IDSH,IDSH
213. FORMAT(20X,A4,'NO PREDECESSORSIA4)'
6. 1 I. SUM=

CC 7 J=1,2
N=JMZ(J+5,i)
CALL UNMI:X(7,JtN,INDI)
CALL UNMIX(14,7,N,IND2)
IF(INlD) 701,731,700

7L ISUM=ISUM+1
KY(ISUM)=IND1

7.1 IF(IND2) 7,7,702
7.2 ISUM=ISUM+1

KY(ISUM)=IND2
7 CCNTI'NUE

N=2
GC TO 405

8 IF(ISUM.EQ.3) GO TO 1C
WRITE(6,206)

2-6 FCRMAT(/,22X,'SUCCESSORS/LOCATION')
WRITE(6,212) ((MNAME(2,KY(J)),KY(J)),J=1,ISUM)
GC TO 11

1" WRITE(6,214) IDSH,IDSH



302

214 FeRMAT(20X9A491 NO SUCCESSORSvA4)
i.N=JM2(279I)

CALL B[TWRT(N,4,NBITS)
NRITEt612O8) NBITS

2308 FCRMAT(/,LOX,'CURRENT STATUS WORD = lv4(lXvA4))
IP=JM2( 10,1) /128
MIX=JM2(l0,I )-IP*128
ICS)H=JM2( 11,1)/1024
EP=JM2( 12,1) /l'-24
MREQ=JM2( 17,1 )-(JM2( 17,1 )/2048)*2048

ISTOVC=JM2( 12, I)-(JM2( 12, I)/1024)*1024
MN4RI=JM2( 13,1 )-(JM2( 13,1 )/1024)*1024
ISTOVI=JM2(21,1)-(JM2(219I)/1024)*1024
MbLK1=JM2( 1,1)/128
rMBLK2=JM2(19,I)-(JM2(19,1)/256)*256
MLK3=(JM2(17qI)/2048)*16

c +(JM2(1(9,1)-(JM2(1991 )/409b)*409b)/256
C

CJtM2( 8,1) LJ M2 (25,1) ,JM2( 20,1) ,JM2( 26,!),IlPJM2 (18,1) ,MN
CARC9ISTDVC, MNARIISTDVI,MBLKlMBLK2tMBLK3
CJ?'2(22, I)

2-'.*9 FCRMAT(/920XWEP =1916wlOX,'MMS =,1l6t5X,'VSF(I-O) ='t

CCXTITLE =1, 16,11X9OTT =lq16t/v19XlMPT =l,l6t5X,INIP(

C'916,7XvOISTOVC =',16,SXO'MNARI ='tl6,7X, IISTCV
CI =1#16/17XlMRLK1 =l,16,8XtlMBLK2 =',1698Xt
c 'Mf3LK3 =*,l6,9X,'IFOV =',16)

IF(IOSH.EQ.0) GC TO 13
WRITE(6#21)) IDISIC IOSH),IOSH

210 FCRMAT(/,?4X,' 1-0 DIST/LOCATION',5X#A4,'/' ,12)

GO TO 14
13 WRITE(6,215) IDSH,IDSH
215 FORMAT(/,24X,A4,'NO 1-C SHAPE.INDICATED FOR THIS JOB1,

CA'.)
IF(JM2(24,I).NE.0) WRITE(6,2ll) IDSH,10SH

211 FORMAT(' ',A49'THIS JUB CONTAINS OVERFLOW FIELDS',A4,/
C)
WRITE(6t2CI) LINO,LIND

14 CCNTINUE
15 WRITE(6,2u1) LINAPLINA

SET=2



303

RETURN
END



304

SUBROUTINE CLEAR
COmMON/BLK1/ IASKIDSHLIND(33)LINA(3 3),IBLKIOLR,IEQ

CL,IDST
CCPMON/BLK1/ INAME,IDATAMJDT,IBST,IEXITIFLD
COWMON/8LK4/NAME(75,8),OATA(75,9),NJOB,NJOBER
COvMON/BLK5/ SET
CCVMON/BLK6/ MNAME(8,64)
COYMON/BLK7/ JM2(27,64)
COMON/BLK9/ JOVF(1024)
COOMON/BLK10/ FLAG(64)
INTEGER*2 SET,JM2,JOVF,IJ,FLAGNJOB,NJOBER
WRITE(6,201) LIN

201 FORMAT(' ',33A4)
00 1 I=1,64
FLAG(I)=O
CO 2 J=1,8

2 MNAME(J,I)=O
00 3 J=1,27

3 JM(JI)=O
1 CCNTINUE

CC 4 I=1,1024
4 JCVF(I)=O

NJCBER=O
WRITE(6,202) IASK,IASK

2j2 FCRMAT(//,' ',A4,' MJDT HAS BEEN ERASED ',A4,//)
WRITE(6,201) LIND
SET=2
RETURN
ENC



305

SUHROLTINE ENTER
CCMMON/BLK1/ IASK, IDSHLIND(33),LINA(33),IBLKIDLR,!EQ

CL, IDST
CCMMON/BLK1/ INAME,IOATAMJDT, IBSTIEXITIFLO
CCrPMON/BLK2/ IWRO(103),FLD(50)
COMMON/BLK4/NAME(75,8),DATA(7599)tNJOBNJOBER
C01'MON/BLK5/ SET
CCMMON/BLK6/ MNAME(8,64)
INTEGER*2 NJOBNJOBERSET,I ,JKN
DATA ICMAtISTRIEN0I', 1,1* 4,'ENO I/
W'RITE(692C1) LIND

2!.:l FORMAT(' 1133A4)
igR ITE(6,202) IOSH, IDSH

2-12 FCRMATI//,' 1,A4,#BEGINNING JOB ENTRY PROCESSINGtA4)
I CALL ICARD

IF(IWRD(l).GT.0) GO TO 10
IF((IWRD(1).NE.INAME).CR.(IWRO(2).NE.IEQL) ) GO TO 11
N=3

2 [f(IWRD(N).GT.0) GO TO 12
IF(IWRD(N).EQ.0) GO TO 11
00 3 I=lNJOB
IF(NAME(I,2)*EQ.IWRD(Na) GQ TO 4

3 CCNTINUE
WRITE(6,203) IASKIASK,IWRD(N) ,IDSH

2%r3 FORMAT(//,' IA4,'ERROR',A4,' UNABLE TO LOCATE fA4v'
CICN BSTI,A4.,'SIMULATICN TERMINATED')

SET= 4
RETURN

4 OC 5 J=it64
IF-(tWrAME(2,J)E.IWRO(N)) GO TO 13

5 CCP.TINUE
CC 6 J=1,64
IF(MNAME(2,J).EC.0) GC TO 7

6 CCNTINUE
WRITE(6,2j4) IASK, IAS.KvIDSH,IWRD(N)

2'-4 FORMAT(//t' l9A4,lW4RNING',4' MJDT IS FULL',A4,'UNAB
CLE TO ENTER ',A4)
c
GO TO 9

7 CC 8 K=198
8 MNAME(K,J)=NAME( I,K)

NJO6FeR=NJO8ER+l
WRITE(61205) IDSH9IWRD(N) ,IDSH

2i-5 FCRMAT(I 1,2A40~ ENTERED',44)



306

9 N=N+1
IF(IWRD(N).EQ.0) GO TO 1
IF(IWRD(N).NE.ICMA) GO TO 12
N=+1
GC TO 2

to IF((IWRO(l).NE.ISTR).OR.(IWRD(2).NE.IEND)) GO TO 14
SET=2
CALL RECHEK
WRITE(6,206) IDSHIDSH

2 6 FCAMAT(//,' ,vA4,IJOB ENTRY PROCESSING COMPLETE',A4,//
L)
WRITE(6,201) LIND
RETURN

11 WRITE(6,207) IASKIASK,IDSH
2C7 FORMAT(//,' ',A4,'ERROR',A4,' NAME CARD (NAME=) IS INV

CALID OR MISSING',A4,'SIMULATION TERMINATED')

SET=4
RETURN

12 WRITE(6,208) IASKIASK,IDSH
238 FCRMAT(//,' 'tA4,'ERROR',A4' INVALID JOB NAME OR MISS

CING CCMMA BETWEEN NAME ENTRIES',A4,'SIMULATION TERMINA
CTEu')
SET=4
RETURN

13 WRITE(6,2C9) IASK,IASK,IWRD(N),IDSH
2C9 FCRMAT(//,' ',A4,'WARNING',A4 ' JOB I,A4,' HAS ALREADY

C BEEN ENTERED ON MJDT',A4,'JOB ENTRY IGNORED')
C
GC TO 9

14 wRITE(6,210) IASK,IASKtIDSH
213 FCRMAT(//, ',A4,'ERROR',A4,' END OF JOB ENTRIES CARD

C(*END) IS MISSING OR INVALID',A4,'SIMULATION TERMINATE
CC')
SET=4
RETURN
N C



307

SU6ROUTINE RECHEK
COMMON/BLK1/ IASK,IDSH,LIND(33),LINA(33),BLK, IDLRIEQ

CL,IOST
COMMCN/BLK1/ INAMEIDATAMJDTIBSTIEXIT,IFLD
COMMON/BLK4/ NAME(75,8),DATA(75,9),NJOB
COMMCN/BLK5/ SET
COMMON/BLK6/ MNAME(8,64)
COCMON/BLK3/ IDIST(25),F(25,41),NDIST
CCMMON/BLK7/ JM2(27,64)
COMMON/BLK8/ TIME
CCPMON/BLK10/ FLAG(64)
COMMON/BLKl2/PARM(35)
INTEGER PARM
UDIENSION LIST(63),IDPL(32,2)
INTEGER*2 HFIX,SET,JM2,I,NtNT,JKL,M,NDPL,NJOBNDIST,

CTIVE,FLAG
CATA ISTR,INCNE/'* ','NONE'/
ISD=PARM(33)
CC 1 I=1,63
LIST(1)=0
N=
NT=2
NCPL=C

2 CO 13 I=1,64
CC 13 J=4,8
IF(MNAME(J,I).EQ.0) GO TO 13
IF(MNAME(J,I).NE.MNAME(2,I)) GC TO 3
WRITE(6,201) IASK,IASK,VNAME(JI),IDSH,IDSH

2..1 FORMAT(//,' ',A4,'WARNING',A4,' JOB ',A4,' HAS BEEN LI
CSTED AS ITS OWN PREDECESSOR',A4,'FIXUP MADEOA4,'MJDT
CLOAC CHECK CCNTINUING')

MNAME (J,I)=O
3 CC 4 K=1,64

IF(MNAME(J,I).EQ.MNAME(2,K)) GO TO 10
4 CCNTINUE

CC 5 K=1,NJOB
IF(NAME(K,2).EQ.MNAME(JI)) GO TO 6

5 CCNTINUE
•WRITt(6,222) IASK,IASK,MNAME(J,I),MNAME(2,I),IDSH

2,,2 FORMAT(//,' ',A4,'ERROR',A4,' JOB ',A4,' LISTED AS PRE
CCECESSOR TO ',A4,' CANNOT BE LOCATED ON BST',A4,'SIMUL
CATION TERMINATEC')
SET=4
REFURN

6 LC 7 L=1964



308

IF(MNAME(2,L).EQ.G) GO TO 8
7 CCNTINUE

WRITE(6,203) IASK,IASK,MNAME(J,I),MNAME(2,1),IDSH
203 FORMAT(//,' ',A4,'ERROR',A4,' MJDT IS FULL. ',A4,' LIS

CTEO AS PREDECESSOR TO ',A4,' CANNOT BE ENTEREO',A4,'SI
CMULATION TERMINATED')
SET=4
RETURN

8 DO 9 M=1,8
9 MNAME(M,L)=NAME(K,M)

N= +1
LIST(N)=MNAME(J,I)
GC TO 13

12 CC 11 M=1,32
IF((MNAME(2,I).EQ.IDPL(M,1)).AND.(MNAME(2,K).EQ.IDPL(M

C,2))) GO TO 13

IF((MNAME(2,I).EQ.IDPL(M,2)).AND.(MNAME(2,K).EQ. IPL(M
C,1))) GO TO 13
C

11 CCNTINUE
CC 12 M=4,8
IF(MNAME(M,K).NE.MNAME(2,1)) GO TO 12

NCPL=NDPL+1
ICPL(NDPL,1)=MNAME(2,K)
IGPL(NDPL,2)=MNAME(2,I)

12 CONTINUE
13 CCNTINUE

IF(N.EO.NT) GO TO 14
NT=N
GC TO 2

14 IF(N.EQ.C) GO TC 17
WRITE(6,204) IASK,IASK

2,4 FCRMAT(//,' ',A4,' NON-PRESENT JOBS REFERRENCED ',A4)

OC 15 I=1,N
15 WRITE(6,205) IDSH,LIST.I),IDSH
2C5 FCRMAT(//,' ',3A4)

hW ITE(6,206) IASK,IASK
2'6 FCRMAT(//,' *,A4,' ALL NON-PRESENT REFERRENCED JOBS EN

CTERED ',A4)
If(NDPL.EO.C) GO TO 17
WRITE(6,207) IASK,IASK,IDSH

2*7 FORMAT(//,' ',A4,'WARNING',A4,' THE FOLLOWING PAIRS OF

C JCBS FORM DIRECT PREDECESSOR LOOPS',A4,'POSSIBLE FREE
CL CONDITION MAY EXIST')
LC 16 I=1,NDPL



309

16 WRITE(6,208) IDSH,IDPL(1,1),IDPL(I2),IDSH
2 8 FORMAT(//t' ',2A4,2X,2A4)
17 00 29 I=1,64

IF(IMNAME(2,I).EQ.3).OR.(FLAG(I).EQ.1)) GO TO 29
FLAG(I)=1
DO 18 J=1,NJOB
IF(NAME(J,2).EQ.MNAME(2,I)) GO TO 19

18 CCNTINUE
19 IF(MNAME(1,I).EQ.ISTR) JM2(27l,)=JM2(27,II+256

IF(DATA(J,2).GT.O) JM2(27,1)=JM2(27,II+024
JM2(1,1)=I
IF(MNAME(3,I).EQ.INONE) GO TO 21
CC 20 IDX=1,NDIST
IF(IDIST(IDX).EQ.MNAME(3,I)) GO TO 36

2C CONTINUE
21 WRITE(6,209) IASK,IASK,MNAME(3,I),MNAME(2,l),IDSH
2G9 FCRMAT(//t' ',A4*'ERROR*,A4,' DISTRIBUTION NAMED ',A4,

C' LISTED FOR JOB ',A4,' CANNOT BE LOCATED ON DIST. TAB
CLE',A4,'SIMULATION TERMINATED')
C
SET=4
RETURN

36 JM2(11,I)=IDX*1024
K=i
CC 24 L=4,8
IF(MNAMELI).EQ.0) GO TO 24
00 23 M=1,64
IF(MNAME(L,I).NE.MNAME(2,M)) GO TO 23
K=K+1
IF(K.GT.5) GO TO 22
JM2(Ktl)=M
GC TO 23

22 CALL OVFLMG(2,I,1,M,1)
23 LCNTINUE
24 CONTINUE

JM2(8,I )=TIME
JM2(9,I)=HFIX(DATA(J,5))
Jf2(1C,I)=HFIX(1J0.O*DATA(J,6)+.1)
JM2(12,I)=JM2(12,I)+(HFIX(DATA(J,1)))*1024
JM2(17,I)=HFIX((DATA(Jt3)/1030.0)+O.999)
IF(MNAME(1,I).EQ.lSTR) JM2(14,I)=HFIX(DATA(J,7))
IF(VNAME(1,I).NE.ISTR) JM2(14,1)=HFIX(DATA(J,8))
FI(F(IDX,1).GE.1.) GO TC 25
IF(DATA(J,4).LE.F(IDX,1)*DATA(J,5)) GO TO 25
JM2(15,I)=HFIX(F(IDX,1)*DATA(J,5))
GC TO 29



310

25 jMP ( 15,I)=HFIX(DATA(J,43)
29 CONTINUE

N=.
R=5.5
DC 32 I=1,64
IF(MNAME(2,1).EQ.O) GO TO 32
CO 27 L=1,64
IF(MNAME(2,L).EQ.O) GO TO 27
00 26 M=498
IF(MNAME(M,L).NE.MNAME(2,I)) GO TO 26
CC 31 J=6,7
Kl=JM2(J,I )/128
IF(KL.EQ.L) GO TO 27
K1=JM2(J,I )-(K*128)
IF(Kl.EQ.L) GO TO 27

31 CC\TINUE
J=6

.33 Kl=JM2(Jl)/128
IF(Kl.NE.0) GO TO 34
JM(J,I)=JM2(J,I)+(L*128)
GO TO 27

34 K1=JM2(J,I)-(Kl*128)
IF(Kl.NE.0) GO TO 35
JM (J,I)=JM2(J,1)+L
GO TO 27

35 J=J+1
IF(J.LE.7) GO TO 33
CALL OVFLMG(2,I,2,L,1)
GG TO 27

26 CCNTINUE
27 CC;TINUE
32 CCNTINUE

RETURN
ENC;



311

BITWRT START BITWRT(KWORDtLENGTHNBITS)
. EQU 10 KWORD CONTAINS INFO. TO BE WRITT

fC 15,12(15) EN. LENGTH IS NO. OF
DC X'7' CHARACTERS TO BE WRITTEN
DC CL7*BITWRT ' DIVIDED BY 4(4 CHARACTE
STM 2,t10,28(13) RS PER HALF-WORD, 8 CHAR
BALR 6,. ACTERS FOR FULL WORD)
USIrNG *, , NBITS IS AN ARRAY THAT HOLDS
L 9,o(,1) THE OUTPU WORD(4 FULL WORDS
L 2,J(',,9) ARE RECULIRED IF KWORD
L 4,=X Fr FC LFOFC''  IS A HALF-WORD,
L 9,4(0,1) 8 FULL WORDS IF KWORD
L 5,C( ,9) IS A FULL-WORD
LR 7,5
SLL 7,2
L 9,8t:,1 )
L-A 8,4

LlAD LA 6,4
CO Rs DL Z,1

SRL 3,7
8CT 6,GO
02 3,4
SL 7,8
ST 3,(7,9)
3CT 5,LOAU.
L '  2,1.' ,28(13)
.VI 12(13),X'FF'
c R 15914



312

UNMIX START fl UNMIX(INDXU,INDXL,IN,IOUT)
B EQU 8 INDXU IS UPPER BIT POSITION OF

BC 15,10(15) STRING TO BE RECOVERED FROM
DC X'5' INPUT WORD IN
DC CLS'UNMIX' INOXL IS LOWER BIT POSITICN
STM 2,8,28(13) MINUS 1 OF STRING TO BE
BALR 8,0 RECOVERED FROM INPUT WORD IN.
USING *,B IN IS THE INPUT WORD FROM WHICH
LM 2,5,'(1) INFORMATION IS TO BE OBTAINEC
L 6,9i.(0,4) IOUT WILL CCNTAIN THE
L 4,(0,2) RECOVERED STRING IN POSITIONS
SRIPL 6,2(4) ONE THRU INDXU-INDXL
S 4,'(',3) ALL PARAMETERS ARE FULL WORD
LA 2,32

S 2,4
SRL 7,%(2)
ST 7,0(G,5)
Lv 2,8,28(13)
"VI 12(13),X'FF'
BC.CR 15,14
-NE.



313

P4O ~ S ST A!rT PACK(NSHIFT,TWR:),SWRD0A4SK)
(r( £j i SHIFT INtJICATC:S NO. OF BIT

1~, Q( .5)P9SLTICNIS TO PIGHT THAT TURL,
I0 S TO bc SHIFTIE- PEFI)RE ',FW

0C CL5'PACK' INFlRt!'ATICN IS ;:1TE,:U F-R(CM

A ALf 6 TWRO1 IS THE TRC.FT WOR' I .iT 0
US I V4~ H.ICH Tl !NF!nRk'4TInN FRF:!'

L 2, 1 SWR f) I S TU ~e PACKEDi.
L +.( 7 DC sTHE SOUPC;E WCRD

L i~ F rl W ~HICH I:IFfP-,TIL)N IS
L 31, T t, r
L I,2 N) MAS K TS 4 NASK V"JR0. Tfi&
L 6,. 1 ,2 T D' S IT IC N S OF S W k

4 , crR~c~r2rTO liTT3 OF MAS K
I. 2, ,1) THA;!T 14 1 vILL PlE TR,'j-SF#EO

ViT) C ;PN:Dr. SHIFTED
rFI-'1748L7S POSITIC4S OF TWRLD.

Lq(,7 lilr PI-STI1CI:S: rF THE SftIFTFi., TWkU.
SLL 1', . 3 C E) S 11SC.\ 1.11 \ TO DlS I T I C Ar 114 WH ICH

V 96 'Jy HAS 'fS VILL [BE UjNCHA'ji.;Lr)
ALL P A"FT E% P rRE FULL t'~)

.1 LL ,AL
r, T

0lRIG1NAL PAGE IS
OFPOOR~ QUALIy



314

SUIROUTINE RANDU(IXIY,YFL)
IY=IX*65539
IF(lY) 5,6,6

5 IY=IY+2147483647+1
6 YFL=IY

YFL=YFL*.4656613E-9
RETURN
EN I



315

SUBROUTINE RANDN(IX,StAM,V)
A=0.0
00 50 1=1,12
CALL RANDU(IXIYY)
IX=IY
A=A+Y
V=(A-6.0)*S+AM
RETURN
END



316

SUbROUTINE SHAPE(JOB,MODENMATNI)
CCVMON/BLK3/ IDIST(25),F(25,41),NDIST
COPMON/BLKT7/ J(27,64)
INTEGER*2 J

C SHAPE FINDS NEXT I/O INTERRUPT POINT EITHER AT I/O

C INITIATION OR AT I/O COMPLETION
J11=J(11,JOB)
CALL UNMIX(15,1,J11,ISHPNO)
I=2
IF(J(18,JOB)) 4,5,15

4 J(iBJOB)=
GO TO 10

5 IFIV ODE) 12,10,12
1 J( JL6,JOB)=IFIX(F(ISHPNG,I)*J(9,JOB))

NMATNI=J(26,JOB)
GC TOi 55

12 J('6,JOB)=IFIX(F( ISHPNC,I+2 )*J(15,JOB) )
N ATAI=J( 26,JOB)
3C TO 55

15 IF(MODE) 27,40,20
2. IT' MP=IFIX(F(ISHPNO,I+1)*J(9,JO B ) )

L +IFIX(F(ISHPNO,I+20)*J(I5,JOB1)

IF(J(26,JOB)-ITEMP) 25,30,30
25 NMATNI=ITEMP-J(26,JOB)

J(26,JOB)=ITEMP
CC TO 55

4 I=1+1
IF 1-20) 2),2J,35

35 J(26,JOS)=J(9,JGB)+J(I5,JOR)
;C TC 55

4. IT-MP=IFIX(FIISHPNO,1)*J(9,JOB))
L +IFIX(F(ISHPNO,I+20)*J(15,JOB))

IF(J(26,JOB)-ITFMP) 5.,45,45
'5 I=I4-1

IF(I-2) 43,4C,35
5, NVTNI=ITEMP-J(26,JOB)

J(26,JOB)=ITEMP
55 RETURN

ENu



317

SUBROUTINE CKCPU(JOBOJCBN)

C02*103, R S TIBKMCMTMOA9IIS
CNMODSNPCLiNPCS9 NCPUS9IFEDBKtIRN11IRN2,IRN39IR
CN4t1RN5, iRN69IRN7,IRN8tIRN9t MMAPFMMSPF
C
COMMON/BLK16/[BWCTR(24),ICEC(5,40),ICECS,!CPU(IO),IPAS

CS(20)9, IFECS, IFEC(4094),IPROS(16),ISAVE(3,3), IVAL
COVQ0L),MALC(256t5), MALCSMAS(24),MAVL(128,5) ,MAVL
CS,MODNM(24)tMTP1(24)#NA(24)9 NAA124)#NABtNAGvNA
LIL(40),NBLK(128),NFB(3)',NJWMNSCHED# NREQ(4
C,924) ,NTP(24) ,NTR(24) ,NUCA(24)
C-
INTEGER*2 IBWCTRICECICECSICPUIPASSIFECSIFECIPRO

C , ISAVE, IVALOVMALCMALCS,MASMAVLMAVLS,MOD
CNI' MTPltNAtNAANAB, NAGvNAML,NBLK#NFB, NJWM,NSCHEC,
ClREQrNTP#NTRq,NUCA
INTEGER*2 J,JOVFL
00 1V I1l,NCPUS
IF(ICPU(I)-JOBO)10,20,10

IV CONTINUE
WRITE (6,12 )JOBOJOBN

12 FORMAT(' CKCPU CAN NOT FIND JOBO=4,14,' TO REPLACE BY
CJCBN=, 14)
RETURN

2C ICPU(I)=JOBN
IPASS(7)=,)
00 5 ) I=1,NlCPUS
IFt ICPUII) ) 50035p50

35 tPASS(7)=IPASS(7)+l
5 CONTINUE

RETURN
E NDF



318

SU,-IRCUTINE CKICS(JOBOYJCBN)
CCtvMUF4/BLK12/ICECSZPICCNiINlilFECSZ91PCT91PItIP2,lQltI

CUtIQ39 IRISITAMINBLKtMMCTIMMSTMTOTALiNitNICS9
CNVJUStNPCLvNPCSt NCPUS91FEDBKIRN1,IRN29IRN39IR
LN4,IRN5vIRN6tIRN7,IRN8vIRN9# MMAPFMMSPF

L
CO'AMON/BLK16/IBWCTR(24)tICEC(5p4O)tlCECSICPU(10)tIPAS

CS(2j)t IFECS91FEC(40,4)91PROS(16),ISAVE(393)91VAL
COV(l' -)9MAM256,5)p MALCSMAS(24),MAVL(128,5)tMAVL
CS,.,kIODNM(24;)#MTPI(24)vNA(24)i, NAA(24)tNABtNAGvNA
CMLI,4," ),NBLK(128),,NFB(3)PNJWMtNSCHEDP NREQ(4
C- , 24),NTP(24),4TR(24),NUCA(24)
L
INITEGER*2 IBWCTRtICECICECSICPUtIPASS IFECSIFECIPRO

(S' ISAVEIVALCVvMALCMALCStMAStMAVLvMAVLSVMOD
LNVMTP1,NAtNAANABt NAGNAML#NBLKtNFBt.NJWMNSCHEC,
;'NR:7f.',,,NTPNTRtNUCA
INTEGER*2 JtJOVFL

C TO FIM: A JOB IN IPROS, REPLACE IT WITH NEW JOB(JOBN)
013 1 I=INIOS
IF(IPROS(I)-J0BO)l0v20tl0

1'. CCNTINUE
RLTURN

2" IPRUS(I)=J0BN
IPASS(9)=C
EC 50, I=INIOS
IMPROSM)50,35,51

35 IPASS(9)=IPASS(9)+l
5. CCNTINUE

RETUkN U2!C-IATAr

QIJALrjv



319

SUBROUTINE LAST3(JOB,KEYTMRtNO1',NO2,NO3,JOBPT,JXCLD)
COMON/BLK7/J(27,64)
COMMON/BLKI6/IBWCTR(24),ICEC(5,40),ICECSICPU(1)),IPAS

CS(20), IFECS,IFEC(40,4)IPROS'(16),ISAVE(3,3),IVAL
COV(1O),MALC(256,5), MALCSMAS(24),MAVL(128,5),MAVL
CSMOONM(24),MTP1I24),NA(24), NAA(24),NAB,NAGtNA
CML(40) NBLK(128),NFB(3),NJWMNSCHED,- NREQ(4
CC,241)NTP(24),NTR(24),NUCA(24)

INTEGER*2 IBWCTR,ICEC,ICECS,ICPUIPASSIFECStIFECIPRO
CS, ISAVE,IVALOVMALC,MALCS,MASMAVLtMAVLSMOD
CNM,MTPI,NANAANAB, NAG,NAML,NBLK,NFB,NJWM,NSCHEO,
CNREQ,NTP,NTRNUCA
INTEGER*2 JJOVFL

C NONl02,NO3=LAST 3 IN CHAIN-NO1 IS ON BOTTOM 3 RETURNED IF
C NONE FOUND
C JOBPT=INOEX OF JOB (PASSED BACK)
C KEYTMR=TMR OR SIMPLEX
C JOB IS THE JOB WE ARE CHECKING BELOW
C LOOK IN ICEC, FIND LAST 3 TC BOUNCE IN CPUS OR LAST IF TMR

NO= 1
NC2=G
NO03=
IPNT=ICECS

I NEXT=ICEC(2,IPNT)
IF(NEXT-JOB) 2,5,2

2 [P'T=ICEC(5,IPNT)
IF(IPNT+1) 1,3,1

3 WRITF(6,4) JOB
4 FORMAT(37H ERROR-DID NOT FIND JOB **********NO.,18)

RETURN
5 JOPT=IPNT

IF(KEYTMR) 7,7,11j
C HERE FOR SIMPLEX CPU
7 IPNT=ICEC(5,IPNT)

IF(IPNT+1) 8,99,8
8 JNAM=ICEC(2,IPNT)

IF(JNAM.EQ.JXCLD) GO TO 7
J27=J(27,JNAM)
CALL UNMIX(3,2,J27,IND3)
IFfIN03)7,9,7

9 CALL UNMIX(8,7,J27,IND8)
IF(IN08)7,10,7

1 CALL UNMIX(11,I~,J27,INC11)
IF(INDll11)11,11,7



320

11 CALL UNMIX(2,1,J27,IND2)
IF(IND2)7,7,12

C CHECK FOR HOLD
12 CALL UNMIX(6,5,J27,INC6)

IF(IN06)13,13,7
13 NO3=N02

NC2=NO1
NOl=IPNT
GC TO 7

99 RTURN
C JOG IS TMR
1:1 IP T=ICEC(5,IPNT)

IF(IPNT+1) 102,99,102
1:2 JNAM=ICEC(2,IPNT)

IF(JNAM.EO.JXCLD) GO TC 101
J27=J(27,JNAM)

C CIIFCK FOR TMR
CALL UNMIX(l,1t.,J27,IND11)
IF(IND11)11,1C1,103

i.3 CALL UNMIX(3,1,J27,1N032)
IF(IND32-1)101,104,1M1

C J4 A IS INITIATED, IS NOT WAITING CPU
i,4 CALL UNMIX(8,7,J27,IND8)

IF(INC8)1-1,1 S'5,I
1i5 CALL UNMIX(6,5,J27,1ND6)

[F(INC6)1 6,1'6 6,1L
ilt NOI=IPNT

GC TO 111
E U

poo Q/j0U~ZS



321

SUBROUTINE FEC(KEY,ITIMEIOPRNIOPND)
C IF IOPRN=O THEN OPND IS TO BE MERGED INTO ICEC
C AFTER ICLK IS GREATER THAN OR EQUAL TO ITIME
C IF IOPRN=1 THEN A NEW SCHEDULE IS TO BE INITIATED

COMMON/BLK7/J(27t64)
COMMON/BLK8/ ICLK
COMMON/BLK12/ICECSZICCNtlN1,IFECSZlIPCTelPItlP2IQ1,I

CQ2,I03, IR,IS,ITAMINBLK,tMCTtMMSTMTOTALNItNIOS,
CNMOOS,NPCLNPCS, NCPUSIFEDBKIRN1IRN2,IRN3,IR
CN4,IRN5,IRN6 IRN7,IRN8,IRN9, MMAPFMMSPF
C
COMMON/BLK13/ RANAI
CCMMON/BLK9/ JOVFL(10C24)
COMMON/BLK16/IBWCTR(24),ICEC(S40)ICECSICPU(10),IPAS

CS(2 ), IFECSIFEC(40,4),IPROS(16),ISAVE(3,3),IVAL
COV(10),MALC(256,5), MALCS,MAS(24),MAVL(I2895)tMAVL
CSMODNM(24),MTPI(24),NA(24), NAA(24),NAB,NAGtNA
CMLI40),NBLKf128),NFBI3),NJWM,NSCHED, NREQ(4
C .,24),NTP(24),NTR(24),NUCA(24)
C
INTEGER*2 IBWCTR,ICECICECSICPUIPASSF,IECSIFEC,IPRO

CS, ISAVE,IVALOVtMALC,MALCSMASMAVLMAVLSMOD
CNM,MTP1,NANAA,NAB, NAG,NAMLNBLKtNFB#NJWM#NSCHEC,
CNREQtNTPNTRNUCA
INTEGER*2 JJOVFL,ICLK
GC TO (10,2300,40),KEY

C TO HERE FOR INSERTION OF A NEW ENTRY
1- ITEMP=-1

I=IFECS
IF(IFECS) 13,13,15

13 K=1
CC TO 50

15 IF(ITIME-IFEC(It )) 25,20,2)
2: ITEMP=I

I=IFFC(l,4)
IF(I) 25,25,15

25 K=0
3t. K=K+1

IF(K-IFECSZ) 45,45,35
35 WRITF(6,40) IOPRN,IOPND,ITIME
4, FORMAT(23H NO RCOM IN IFEC FOR,18,2HON18,2HAT 112)

GC TO 70
45 IF(IFEC(K,4)) 30,5C,3C
53 IFEC(K,1)=ITIME

IF C(K,2)=IOPRN



322

IFEC(K,3)=IOPND
IFEC(K,4) I
IF(I]PND) 54,54,52

52 J27=J(27,ICPND)
CALL PACK(12tJ27,1,1)
J(27,IOPND)=J27'

54 IF(ITEMP) 55,55,6C
55 IFECS=K

GO TO 71
6. IFEC(ITEMP,4)=K
7. RETURN
C TO HERE FOR REMOVAL OF LEADING ENTRY OR ENTRIES
2 D I=IFECS

IF(I) 210,21C,2C5
2.5 IF(IFECII,1)-ICLK) 215,215,21)
212 RETURN
215 IFFCS=IFEC(I,4)

IF(IFEC(I,2)-i) 225,220,225
22- WRITE(6,3CO) ICLK"

33 FORMAT(' FEC-TIMz =',15,' SETS NSCHED')
NSC HE=LI
O0 TO 285

225 IF(IFEC(I,2)) 285,230,285
23) JOB3=IFEC(I,3)

J27=J(27,JOBP)
CALL UNMIX(I ,J27,INO)
IF(IND) 235,235,28C

235 IF(J(2,JOBP)) 24),27C,240
24- CO 245 KX=2,5

IF(J(KX,JOBP).EQ.) GO TO 270
IPREC=J(KX,JOBP)
IF(ICLK-J(8,IPR5 D)-2*J(14,IPRED)) 245,245,280

245 CONTINUE
J22=J(22,JOBP)
CALL UNMIX(1,,J22,IND)
IF(I4D) 270,270,25:

25, DO 255 KX=1,1L
255 IVALOV(KX)=

CALL OVFLMG(0,JOBP,1,IVALOV,11)
DC 26L KX=1,1G
IF(IVALOV(KX).EO.) GC TO 270
IPRFD=IVALOV(KX)
IF(ICLK-J(8,IPRED)-2*J(14,IPRED)) 260,26C,280

26., CCNTINUE
27 wRITE(6,275) ICLK,JOBP
275 FC1-AT(' FEC TO CEC-TIPE =',I5,' JOB = ',15)



323

CALL CEC(ItJOBP)
28C J27=Ji27,JOBP)

CALL PACK(0,J27,j,4096)
J(27,JORP)=J27

285 IFEC(1,L)=0
IFECf I,2= 
IFEC(I[,3)=O
IFECI I,4)=
GO TO 200

C TO HERE FOR FINDING EXIT TIME OF LEADING ENTRY

400 I=IFECS
IF(I) 405,405,410

4C5 IPASS(8)=-1
RETURN

41C IPASS(8)=IFEC(I,1)
RETURN
END



324

SUBROUTINE CEC(KNOWK)
COMMON/I3LK7/J( 27,64)
COMMON/BLtQ3/ ICLK
CC/MON/fLK12/ICECSZ, ICCN, INl., FECSZ, IPCU, [PltP2, 101.,1

0v,29103, IR, IS,!TAM1NE3LKMMCTMPSTMTOTALNi ,NIOS,
LNIK2DS9NPCLNPCS# NCPUSIFEDBKtIRN1lRN2tlRN3tIR
CN4, IRN5, IRN6, IRN?, IRN8, IRN9v MMA.PFItdMSPF

C P S RP1.I,RP1l

CCi'MGN4/BLK16/IBWCTRI24),ICEC(5940),IC'ECSICPU(1O,),IPAS
CSLKA, 1FECS,1FECC4e),4),[PRflS(16),1StAVE(3,3), IVAL

COVI 1)tMALC(256,5), MALCSMAS(24)tMAVL(128t5),PPAVL
C.sonlNM(24),MTP1(24) ,NA(24), NAA(24),NAB,NAG,NA
(IL(4C)tBLK(128),NFB(3),NJW?~,NSCHED, NR;E:Q(4
C'9, 4) ,NTP( 2)4) ,NTR( 24) ,NUCA (24)

INTEGER*c2 IBWCTRICEC, ICECS, TCPU, IPASS,IFFCS, IFEC, IPRO
LS, ISAVE, 1VALCV,N'ALCMALCStfMAS,MAVLMAVLSMOO
cN?~MTP1 ,NA,NAA,NAB, NAG,'NA!"L,NBLKNFB,NJWMPNSCHECI
C.!4R'Q,\TP ,NTRtNIJCA
INTUGER*2 JJOVFLtICLK
CC TO (1,~,~%5.)KNOW

C TO iiERE- FOR PLACING A NEW ENTRY INTO ICECC ARR-AY

12 IF(ICFC(2,I)) 15,309,i5
12, 1=1+1

2., WRIT"':(,22)
22 FOkMAT(17H SUB CEC ALL FULL)

~RF TURN

3- IC7C( ,1 )=IK

IC.-C(3,T)=IC

J 2 I = J ( 27,p K)Q~
iALL UNMIXW 19,9J27, IND)
IF(INO.EQ.7) GO TO 32
iF(J(6,K))32932,33

32 J17=J(L7,K)
CALL UNMIX 1.1, : ,J17,MMS)
J(2)6,K)=IFIX(M','S*MINt3LK*RP'18)

8' 4~ 34 5



325

NJWM=NJWM+1
GO TO 34

3O.;0 FORMAT(' CEC HAS PLACED JOB8*'4,' INTO ICEC POSITICN',
C14)

-335 FORMAT(' CEC NOW CALLS SHAPE FOR JOB,14)
33 CALL SHAPE(KtC,NMATNI)

NEW=5
34 NSET=NEW

CALL PACK(0,J27,NEW,NSET)
J(27,K)=J27
IPASS(1)=IPASS(1)+1
KK=IRASS(1)-IPASS(2)

35 IF(IPASS(2)-IQ1) 40,40,53
4C' IF(IPASS(2).GF.13) GO TO 42

IF(IPASS(2).GE.5) GO TO 44
IF(IPASS(2).GE.3) GO TO 46
IF(KK) 50,50,70

42 IF(KK-5) 50,71,70
44 IFIKK-3) 50,70,70
46 IF(KK-2) 5),7,70
5? J12=J(12,K)

CALL UNMIX(14,1Gt,J12,INJ1)
IF(IND1-IP1) 55,70,70

55 INU=J(25,K)-ICLK
KTEMPI=J(9,K)
KTEMP2=ICON/MMCT
0=4.J*FLOAT(KTEMP1)/FLOAT(KTEMP2)
[F(IND-IFIX(D)) 70,70,75

70 NSCHED=1
75 RETURN
C TO HERE FOR A NEW SCHEDULE
1 NSET=3

1=1
ICLCS=-1
IPASS(2)=0
IPASS(11)=
NCNT = 0

11 3 NPL=ICECS
h15 IF(ICEC(2,I)) 150,110,150
11. I=I+1

IF(I-ICECSZ) 1059105,12
12. WRITE(6,125) NCNT
125 FORMATI' AT THIS NEW SCHEDULE CALL TO CEC ICEC HAD',

1 14,lX,'ENTRIES')
C
IPASS(I|=NCNT



326

IPASS( 2)=NCNT
IF(NCNT.FQ.O) GO TO 140
LC 135 KKK=19ICECSI
IF( ICEC(2,KKK).NF.-D) WRITE(6,130) KKK,(ICEC(KYKKK),KY
I;= ,5)

132 FCk"AT(6(3X,17))
135 CCNT INUE
14., RETURN
15, JNAM=ICEC(2,I)

NCNT=NCNT+l1
C -------- INTERNAL PRIORIJTY CALCULATICN
16L J27=J(27,JNAM)

J 12=J (12, JNAM)
CALL UNMI X(15, 1CJ12 NEXP)
IN p 1F IX(CNE XP *R P 3)
IPkT=J( 20,JNAM)
J?5=J (25 ,JNAM)
IF(J25-ICL() 165,165,17C

1llf5 NLLN iFIXjRPC4* IRP, b-(FLOAT(ICLK-J25)/FLOAT(IPRT))))
GC TO 172

1711 NLLN=IFIX(RPC-4*(RPC'6-(FLOAT(J25-ICLK)/FLOAT(IPRT))))
172 IF(NLULN.LT.,O') NOLN=O
I1 I [NP=INP+iNOLN

IT.AMP=ICEC(3,I)
IF'^AP=FL04T(ICLK-ITEM~P)/(FLOAT(IPRT)*RP")6)
IF(RP2 5S.GT.1.) GO TO 16C.
I W41T= . /(C P05* (1.+TEMP))
IF( WAIT) 178, 185, 185

i7d I WA IT =6
,')C TO 1L85

181 IF(TEMP.GT.L.) qO TO 182
IWAIT =IFlX(CTEMP*RP')5)

168 IV.AIT=IFIX(RP2,5*(1.+.5*TEMP))
185 lrP=INP+IWAIT

i9 J23=J(2~3,JNAM) 0-GX1tNAL AI
CAL.L UNi'AIX(7, 2 ,J23,MPRF) OF, p7Coi.JR~ j
I N =I NP +M~P 'F QUL17j

1-15 IHI\P.Gr.255) INP=255
J I =j ( I IJNAM)
LALL PACK{ 7,Jll3,INP,25,5)

IC!EC(1,1 )=INP
IF(NASET.FQ.1) .;C TO 5<3-l-
IP, ;%SS.(2 ) =IP AS S (2)+ 1



327

CALL UNMIX(5,4tJ27 IND)
IF(IND.EQ.1) IPASS(11)=IPASS 11)+I

C NOW LINK JNAM INTO CHAIN ACCORDING TO INTERNAL PRIORITY
20. NTEMP=O

IFIICECS) 210,210,220
21u ICECS=I

ICEC(5,I)=-1
GO TO 400

22C, IF(ICEC(1,l)-ICEC(1,NPL)) 230,230,260
230 NTEMP=NPL

NPL=ICEC(5,NPL)
IF(NPL) 24], 240,220

24C ICEC(5,NTEMP)=I
fCEC(5,I =-1
GC TO 400

260 IFINTEMP) 275,265,275
265 [CECS=I

ICEC(5, I )=NPL
GO TO 403

275 ICEC(S5,NTEMP)=I
ICEC(5,I)=NPL

40J I=I+1
IF(I-ICECSZ) 103,103,120

C TO HERE FOR JOB COMPLETION
1 IF(ICECS) 990,990,1135
994 WRITE(6,995)
995 FORMAT(' ','****ERROR**** CEC WAS CALLED FfR REMOVAL 0

CF A JOB FROM ICEC AND ICEC IS EMPTY')

RETURN
14L5 JX=ICECS
I. L IF(ICEC(2,JX)-K) l-)2 ,2 SC0,1020'
1ZCL NTEMP=JX

JX=ICEC(5,JX)
IF(JX) 133, 1330,110

1 .3 WRITE(6,1C31) K,K
h,31 FORMAT(' ****ERROR**** CEC WAS CALLED FOR COMPLETION 0

CF JOB',14/ ' BUT JOB',14,' WAS NOT FOUND IN ICEC CHA[
CN,CEC WILL '/ ' CHECK TO SEE IF THE JOB IS I
CN ICEC BUT UNCHAINED')
I=l

1C4. IF(ICEC(2,1)-K) IC601C50,1060
15,. C 1J55 NR=1,5
1"55 ICEC(NRI)=O

IPASS(1)=IPASS(1)-i
RETURN



328

106, l=1+l
IF(I-ICECSZ) 1040,100,1070

1-7L RETURN
Z" IF(JX-ICECS) 2S20,2010,2020

2,1 ICECS=ICEC(5,JX)
GC TO 2030

2,Z. ICEC(5,NTEMP)=ICEC(5,JX)
2C3. LO 2;4%1 NR=1,5
2,4:  ICEC(NR,JX)I=

J27=J(27,K)
CALL PACK(3 J27,C,1)
J(27,K)=J27
IPASS(1)=IPASS(1)-
IPAS5(2)=IPASSf)-i
J11=J(11,K)
CALL UNMIX(10,..,J I, INCI)
IF(INU1-IR) 2 5~-,2' 8C,2C8.

S5. JtL =J(27,K)
.'LL UN IX ~1 ,9,J27, 1)

IF( INDI) 2 7')0,2 6 ,2 7)

2'j . J17=J(17,K)
CALL UNMIX(11,,,J17,INC1)
I1 (IC4 1-VMST) 2 17 1,2.8 ,2 8)

2.1. KK-IPASS( )-IPASS(2)
IF(IPASS(2)-I I) 2,"71,2J7i,9999

2171 IF(IPASS(2).GF.1,) GC TO 2072
IF(IPASS(2).GE.5) GO TC 2074

IF(IPASS(2).GE.3) GO TC 2'76
IF(KK) 9999,9919,20;8:.

2-72 IF(KK-5) 9999,2CI80,2 86
2,74 IF(KK-3) 9999,28:.,2f 8
27 IF(KK-2) 9999,228l,228
2 , SCHEc=1

999 RLTURN
C ----- P 1EkE FOR RECALCUJLATICN OF PRIORITIES

NS -T=1
IF(ICECS.L _. . I.ICECS GT. ICECSZ) GO T(. 59v

KK
I=ICECS

_>. . IF(I.LE.0) GO TO 5%'2
.

K K =KK+1
NAYL (KK =I
I =ICL( I)

LC T=KK '9 ;0Q AGJJ
KK='



329

5130 KK=KK+1
IF(KK.GT.LCNT) GO TO 5C50
I=NAML(KK)
JNAM=ICEC(2,1)
GO TO 160

5050 DO 5060 I=1,LCNT
CC 5060 KK=I,LCNT
IF(ICEC(,NAML(I)).GE.ICEC(I,NAML(KK)) GO TO 5060
ITEMP=NAML( II
NAML(Il=NAML(KK)
NAML(KK)=ITEMP

5;06. CCNTINUE
ICECS=NAML(1)
I=,

517 I=1+1
IF(I.EQ.LCNT) GO TO 5080
ICEC(5,NAML(II))=NAMLI+1)
GO TO 5070

5068 6 ICEC(5,NAMLII))=-1
5c.90 NSET=

RETURN
EUO



330

SUP4CUTIN.E HLS(KEY,JCB)
6 1 NENSI ON I succv( li)
1I:TEGER*2 ISIJCCV
INTEGER RV':F/IRVrEF' /,STCV/'STOVI/
CCVMCN/BLK3/ IDIST(25) ,F(25941)vNDIST
CCwrm'Q/fLK7/J(27,64)
CCt~'MONJ/BLK@/ ICLK

C2,103, IR, IS,ITAtVI~NBLKMMCT,fMST,MTOTAL,NI ,NIOS,
(NC~L~')S,NPCL,NPCSv NCPUSIFEDBK,IRNl, IRN2, IRN3, IR
CN4,IRN5, IRN6,IRN7,IRN8,IRN9, MMAPF,PbMSPF

CC0vN/BLK13/RP,-lRP2RP3,P4RP5RP6,RPC7,RP(A,R

Cf-','A-j,/BLK16fhwCTR(24),ICEC540),ICECS,ICPU(I1,1,PAS
CS(?-') , IFECS,IFEC(A'J,4) ,IPROS(16) ,ISAVE(3,3) IVAL
(,CV(1'.),MALC(256,5) , M4LCS,MAS(24),MAVL(128.5).WAVL-

V~.&N ( 24 ,ATPi-'4) NA(24), NAA(24h*NAB,NAG,NA
tfr'-L(4.A,NB3LK( 12,3),1FB( 3) ,NJWMNSCHED, NkREQ(4
C.., £4 ) ,JTP( 24),NTR (24) NUCA( 24)

INTEG5,R*2 IEBWCTf,ICEC,ICECS,CPUIPASSIF%-S, IFEC, IPRO
CS, IS!AVEiIVAL.CVtMALC,M'ALCSMAStMAVLMAVLS,'QC
LNM,mTP1 ,NANAANABq NAGtNAML,N8LKvNFaNJWMNSCHEC,

N ~R - 0, NTP , NTR , NlC4
INTz',ER*'2 JgJUVFL, ICLK

GC TC (1In, 500,1C KEY
C TO HEPC FOR INITIAL J-TABL-- :SCAN
1. 1=

CC 25%., NXX=1,25
1F(IflST(NX).EQ.RVEF) GO TO 251

221l IUX<:-RNNXX
111 252 NXXz1,25 L7

IF(I0IST(NXX).EQz.STOV) GO TO 253

2133 LIXSTDINWX
5'.3 If.=1+1 4X

1 j 1=Jt (I, I )
\OkLL UAM X ( 7,t2,J1, I ND)
lF(INC) 3Z,15,3C



331

CALL UNMIX(-,7*0*JXiPINM)
MIX=NPCS*INM+NPCL*(lCO-INM)
FMLX=FLOAT(MIX)**Cl
MNARC=IFIX(FLOATIICON)/((FLOAT(ITA)+FLOAT(IPCT)*FMIXJO

C.011)
JX=J(Iltl)
CALL PACK(3vJXtMNARCP.IC23)
Jilltl)=JX
JX=J(1291)
IND=IFIX(MNARC*RP09)
CALL PACK(O*JX91ND*1023)
J(12,91)=JX
JX=J(1391)
MNARI=ICON/IFIX(FLOAT(ITA+IRN6*IRN7*IPCT)*.Ol)
CALL RANOU(IRN2,IXXtRAN)
.IRN2=IXX
MNARI=IFIXIFLOAT(MNARI)*(.5+RAN))
CALL PACK(3vJX9MNARlvlC23)
J(1391)=JX
JX=J(2191)
INC=MNART/3
CALL PACK(O*JXtIND91023.)
J(2191)=JX

CALL UNMIX(149LOoJllvlSHPNO)
KTEMPI=J(9,I)
NSHPTS=IFIX(F(ISHPNOv2l))
ISTDC=IFIX(MNARC*RP09)
ISTD(=MNARI/3
RM=FLOAT(MNARC)
STDR=FLOAT(ISTOC)
PM=(FLOAT(KTEMPI))/(F(ISHPN0921)+l.)
KTEMP=J(1591)
STDP=F(IDXSTDtISHPNO+11*FLOAT(KTEMPI)
CALL NORPRB(PMtSTOPoRMgSTORtIOXERNiPROBC)
[PRT=IFIX((PROBC+(l.-%-PROBC)*(FLOAt(IFIX(PM/RM))+.6))*(

CNSHPTS+1))
RM=FLOAT(MNARI)
STDR=FLOAT(ISTOI)
PM=(FLOAT(KTEMP))/F(ISHPNO*21)
STDP=F(TDXSTD#ISHPNO+21)*FLOAI(KTEMP)
CALL NORPRB(PM#STDPtRMiSTORtIOXERN*PROBI)
LPRT=IPRT+IFIX((PROBI+(I.i-PROBI)*(FLOAT(IFIX(PM/RM))+.

L6))* (NSHPTS))
L
J(2091)=IPRT



332

IF(J(14,I ) LE.2*IPRr) J(14,1).2*IPRT
J27t±J(27,I)
CALL PACK(09J27,8344#8344)

3.1 JX=J(17,[)
CALL UNMIX( Il, I,JXMMS)
LCTPm=1II(RP()8*(MIN8BLK*MMS*MMCT U/ICON
IF(J(14,I )-IFIX(RPO1)*(LOTIM*J(20,I))) 375#37593C5

3L5 U-t1YMS-MTOTAL/4C) 3)793109310

CALL UNMIX( 15,ICtJl2,INC)
IF(I!N-30) 313,375,375

31 fSUC =C

3L5 KX=I(X+l

S JX=J(KX,1)
CALL UNMIX(7,CJXINC)
IFIINU) 33-j.31"325

S NSt)C='NSUC+ 1
~C CALL UNMIX(14,7,JXtIND)

LF( I 4L' 315,315,335
3 5 NSUC=NSUC+.

,7C Tr, 315
14, JX=J(22tl)

LALL UNMI X(2,1, JX, INO)
IF(I,\[) 37",37T9345

'7 IVALJV(KX)=C
CA~LL OVFLMG(1,1,2,IVALCV,10)
LCT 36: K)(=191Q
IF(IVALr)V(KX) ) 35936:19355

,5h S U CNS UC+ I
3 1 CCNTINUE
31 ! F(NSLJC-NICS-NCPUS) 371,372,372

III K T -M2)1 =A SJC
L[ T f, 37 3

37. KT:.-I1=NIOS+NCPUS
37i KT.NIP2=J( 14,1)

KT :MP'=MMS
JX.=J(27,1)

D Q I 4.£. 1 ) K TE 3 =3 * KTEM P 3
IF((FLOAT(IRN8)/1Th.)*(FLOAT(KTEM'P'3)/FLOAT(MTOTAL))

-(FLU'.AT(LDTIM)*FLOAT(KTEMPl) )/FLOAT(KTLmP2
7) 35, 38 't3 8,



333

375 JX=J(27,I)
CALL PACKIOtJX,512,512)
JI27,1)=JX

380C X=1
35 MX=MX+1

IF(MX-5) 40,40,70
4 IPRED=J(MX,I)

IF(IPRED) 35,35,45
45 IF(J(8,IPRED).EQ.0) GG TO 15

IF(ICLK-J(8,lPRED)-2*J(14,IPRED)) 35,15,15
7C J22=J(22,1)

CALL UNMIX(1,O#J22,IND)
IF(IND) 75,100,75

75 CO 77 MX=1,10
77 IVALOV(MX)=O

CALL OVFLMG(1I,I1,IVALCV,10)
WRITE(6,1380)1

1380 FORMAT(' HLS CALLED OVFLMG TO CHECK FOR PREDS OF JOB',
C[8,'75')
KX=O

80 KX=KX+1
IF(KX-10) 85,85,100

85 IF(IVALOV(KX)) 90,100,90
CC IPREO=IVALOV(KX)

IF(J(8,IPRED).EC.O) GC TO 15
IF(ICLK-J(8,IPRED)-2*J(14,IPRED)) 80915,15

Ic. J27=J(27 ,1)
CALL UNMIX(9,8,tJ27IND)
IF(IND) 105,110,105

1i'05 NoR=J(14,1)
CC TO 115

11i ISTC=J(14,I)/ 3
TEMOI=FLOAT(ISTO)
KTEMP2=J(14,1)
TEMP2=FLOAT(KTEMP2)
CALL RANDN(IRN3,TEMP1,TEMP2,RAN)
NPRD=IABS(IFIX(RAN))
IF(FLCAT(NPRD).GT.TEMP2+3.*TEMPI) NPRD=NPRC/2

115 J(25,I1)=J(8,1)NPRD
IF(ICLK+2*J(20,I).GT.J(25,I)) J(25,1)=ICLK+2*J(20,I1
CALL UNMIX(10,9,J27,IND)
IF(INC.EQ.1) GO TO 116
IF(Ji8,I).EQ.0) GO TO 116
LCTIM=O
GC TO 117

116 J17=J(17,I)



334

CALL UNMIX(1L,0tJ17,VMS)
LDTIM=IFIX(RP08*(MINBLK*MMS*MMCT))/ICON

117 IND=IFIX(RP06*(J(20,I )+LDTIMI
IF(J(25, I )-ICLK-IN ) 120,120,125

12e CCNTINUE
13%J FORMAT(' HLS WILL NOW CALL CEC FOR INSERTICN OF JOB',I

(./ ' INTO ICEC, NOWRUN',I12,' 120')

CALL CEC(1,I)
GC TC 128

125 NTT=J(25,1)-INC
WRITE(6,1320) I,NOWRUN,NTT

1320 FORMAT(' HLS WILL NOW CALL FEC FOR INSERTION OF JOB',I
C4/ ' INTO IFEC, NOWRUN=',t2,' NTT=,I6,' 125'

CALL FEC(1,NTT,C,I)
12L IF(NOWRUN) 15,15,129
S129 : OWRU= 0

(:0 TA 11 6

13 RETURN
C TU FtERE FOR INITIAL ASSIGNMENT OF PROCESSORS AFTER NEW SCH
C 'L;UL
: II= ICECS

IFiI) 523,520,525
52C WRITE(6,523)
.23 FU,0MAT(' CURRENT EVENTS CHAIN EMPTY ON INITIAL CALL TO

( FLS 500')
RETURN

CO 53L K=1,NCPUS
53 IF(ICPU(K).EQ.Z) NFCPU=NFCPU+1
545 NFICP=3

CC 55( K=1,NIOS
55' IF(IPROS(K).EO.2) NFIOP=NFIOP+1
", JINrX=ICEC(2,I)

J27=J(27,JINDX)
CALL UNMIX(14 13,J27,LCAD)
IF(LOAD) 575,575,57n

5f" IF(IPASS(S)-IO2) 575,575,651

CALL PACK(3,IN0,J27,1C53)
IF(I\D.EQ.5) GO TO 640
IF(IND.F0.9) GO TO 645
IF(IND.EQ.1029) GO TO 590
IF(INO.EQ.1033) GO TO 620
X" TJ 650



335

590 IF(NFCPU-3) 650,595,595
595 CALL CKCPU(O,JINDX)

NFCPU=NFCPU-1
CALL CKCPU(O,JINOX)
NFCPU=NFCPU-1

6CC CALL CKCPU(0,JINDX)
NFCPU=NFCPU-1
CALL PACK(O,J27,2,134)
J(27,JINDX)=J27

6C5 INCC=ICEC(4, I)-(ICEC(4,I)/2)*2
IF(INC.EQ.O) ICEC(41)=ICEC(4,1)+L
IPASS(3)=IPASS(3+
IF(LOAD.EQ.0) IPASS(4)=IPASS(4)+l
IF(NFCPU) 650t610,650

610 IF(NFIOP) 650,655,650
62( IF(NFIOP-3) 650,625,625
625 CALL CKIOS(0,JINOX)

NFIOP=NFIOP-1
CALL CKIOS(O,JINOX)
NFIOP=NFIOP-1
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+2

633 CALL CKIOS(O,JINDX)
NFIOP=NFIOP-1
MASK=2186
IF(LOAD.EQ.1) MASK=2184
CALL PACK(GJJ27,2178,MASK)
J(e7,JINDX)=J27
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+1
GC TC 605

635 IF(INDC-2) 640,645,640
64. IF(NFCPU.GT.C) GO TO 60C

IF(NFIOP) 655,655,650
645 [F(NFIOP.GT.0) GO TO 630

IF(NFCPU) 655,655,650
65% I=ICEC(5,1)

IF(I) 655,655,365
653 FCRM4T(' HLS HAS ASSIGNED CPU NO.',I3,' TO JOB',I3)
654 FCRMAT(' HLS HAS ASSIGNED ICP NO.',13,' TO JOB'I3)
655 GC 670 IX=1,NCPUS

IF(ICPU(IX).NE.0) WRITE(6,653) IX,ICPU(IX)
67C CCNTINUE
675 CC 68C IX=1,NIOS

IFIIPROS(IX).NE.0) WRITE16,654) IXIPROS(IX)
6b: CCNTINUE

RETURN
C TO HERE FOR JOB CGMPLETICN



336

~2CONTINUE
134i FCRMAT(O HLS WILL NOW CALL CEC FOR REMOVAL OF JO51*14/

c *FROM ICEC FOLLOWING JOB CCMPLETICN, 11PO

CALL CEC(3tJCt3)
J27thJ(21vJ03)
CALL UNMIX(7,6,J27, IND)
[INOEQ.O) IPASS( 3)=IPASS(3)-l
IPASS (41=IAS(41-1
j(.jJ0ii)ICLK

J( 26,JO3) =O
Jl-.=J I1'),J0B
CALL PACK ,IJ10#, 932643)

1-,4 CALL UNMIX(9t8,J27,IND)
IF( INDO) 1111 ,10C5,lJl0

TE OPI=FL0AT( ISTO)
KT?:fP2=J(14,JCB)
rr~PZ=FLOAT( KTEcMP2)
CALL RANON( IRN3,TEMPI.,TEMP2,RAN)
NPRU=IABS(IFIX(RAN))

V..'NP.)J ( 14, JOB)
1Vii lF(J(8,JOPJ-J(25,JOB)) 1012,1013,1013
1^12 J(25,JOb)=J(25vJO6)+NPR0

,;C To 1,.15
1'13 Jl25,J(h)=J(8,JCL3)4NPRC
1:15 IF(IICLK+2*J(22,tJOb) .GT.J(25,JOBI ) J(25,JO6)=ICLK+2*J(2

CALL bNMIXI 1C,9,J27, INL)
IF(IND.EO.:,) GO TO 1'%.16

LCTIY=O
irC T7, 1:217

CALL UNMlIXI 11v),Jl7,MMS)
LCTIMI=IFIX(RP2'8*(MINBLK*MMS*'ICT))/IC I

1I17 NTT=J(25,JflB)-IFIX(RP.:6*(J(20,JOB)+LOTTM))
13o, F0:11M1ATI' FLS tqILL NOW CALL FEC FOR INSERTICN OF JOL1',I

C4/ INTO IFEC AFTER JnB COMPLETICNt NrT=',16

~,I 1 1)15')
CALL FE-:CUNTT,?,JOB)
J271J(27,Jl3)



337

CALL UNMIX(1C9,J27,INC)
IFIIND) 1080,1020,1080

102C J1=J(lJOB)
CALL PACK(OJ27,16,16)
J(27,JOB)=J27
CALL UNMIX(15,7,J1,IND)
IF(iND) 1025,1030,1025

1I25 CONTINUE
1226 FORMAT(' HLS WILL NOW CALL MEMRLS TO RELEASE BLOCK',14

0,/ ' FROM JOB',14)
C
CALL MEMRLS(JO8,IND)
CALL PACK(7,JI,0,255)
J(1,JOB)=J1

1:30 J19=J(19,JOB)
CALL UNMIX(8,0,J19,IND)
IF(INO) 1035,10C40,1035

1035 CONTINUE
CALL MEMRLS(JOB,IND)
CALL PACK(0,J19,0,255)
J(19,JOB)=J19

1040 J17=J(17,JOB)
CALL UNMIX(15,11,J17,IOU)
CALL UNMIX(12,8,J19,INOL)
INC=0
CALL PACK(O,INO,INDL,15)
CALL PACK(4,IND,INDU,15)
IF(IND) 1045,1050,1045

1045 CCNTINUE
CALL MEMRLS(JOB,IND)
CALL PACK(8,J19,0,15)
J(19,JOB)=J19
CALL PACK(11,J17,0,15)
J(L7,JOB)=J17

1050 J22=J(22,JOB)
CALL UNMIX(8,7,J22,IND)
IF(INC) 1C55,1083,1055

1055 CO 1057 KX=1,10
1V57 IVALOV(KX)=O

CALL OVFLMG(1,JOB,8,IVALOV,10)
KX=

1C63 KX=KX+1
IF(KX-10) 1365,1065,1380

1265 IF(IVALOV(KX)) 1C70,108,1070
1i:i7 INC=IVALOV(KX)

VWRITE(6,1026) INDJOB



338

CALL MEMRLS(JOB,IND)
IVALOV(1)=KX-1
CALL OVFLMG(3,JOB,8,IVALOV,1)
CC TC 1060

1.8l CONTINUE
C WILL NhO UPDATE PREDECESSCR FIELDS OF SUCCESSORS OF JOB

109g JJX=5
,IRcTRN=1
IFLAG=1

1Z93 IFLAG=-IFLAG
IF(IFLAG) 1C95,1105,1105

1..95 JJX=JJX+1
IF(JJX-7) 110,11300,1175

11:' JWRU=J(JJX,JOB)
CALL UNMIX(7,C,JWRD,IDXSUC)
GC TO 1137

11,5 CALL UNMIX(14,7,JWRD,ICXSUC)
11(7 IF(1OXSUC) 1110,1C93,1110
111 j 1 -7 ==J 27 tI

n
V

c )

CALL UNMIX(13,12,NJ27,IND)
IF(IND.EQ.1) GO TO 116C
CALL UNMIX(1,3,NJ27,INC)
IF(INC.EQ.1) GO TO 1160
KX=l

11i3 KX=KX+1
IF(KX-5) 1115,1115,1133

1113 IF(J(KX,IOXSUC)) 1113,1113,1120
112 IF(J(KXICXSUC)-JOB) 1125,1113,1125
1125 IPREC=J(KX,IDXSUC)

IF(J(89,PRED).EQ.)) GC TO 1160
IF(ICLK-J(9,1PRED)-2*J(14,IPRED)) 1113,116 ,116.

113. J2.=J(22,ICXSUC)
CALL UNMIX(1, ,J22, I SPILL)
IF(ISPILL) 1135,1170,1135

1135 CC 1137 LX=,1W
1137 IVALOV(LX) =0

CALL OVFLMG(1,IDXSUC,1,IVALOV,n1)
KX=C

114, KX=KX+1
IF(KX-10) 1145,1145,117.

I145 IF(IVALOV(KX)) 1147,1171,1147
1147 IF(IVALOVIKX)-JCB) 1150,114F,1150
11. IPREO=IVALOV(KX)

IF(J(6,IPRED).EQ. ) GC TO 116:
IF(ICLK-J(8,IPRFD)-2*J(14,IPRED)) 1140,116 9,1161

116' IF(JJX-7) 1093,1'93,1165



339

1165 IF(IRETRN). 1205,1205,1190
I170 I=IDXSUC

NCWRUN=1
C WILL !NOW BRANCH TO 100 FOR CALCULATION OF TARGET TIME
C FOR JOB IDXSUC AND INSERTION INTO ICEC OR IFEC

GC TC 100
1175 J22=J(22,JO8)

CALL UNMIX(2,t1J22tIRETRN)
IF(IRETRN) 1235,1205,1180

1180 DC 1181 MX=1,10
i181 ISUCOV(MX)=O
1185 CALL OVFLMG(1,JOB,2,ISUCOV,10)

MX=C
1190 PX=MX+1

IF(MX-10) 1195,1195,1205
1195 IF(ISUCOV(MX)) 1200,119C,1200
12 C ICXSUC=ISUCOV(MX)

GC TO 1110
12C5 RETURN

END



340

SUR'ROUTINE INORPRB3(PMSTOP,RMSTDR,IOXERNPROB)
COV~MGN/BLK3/ lDlST(25) ,Fl25,41)tNOIST

lF (PIM-3.*STDP-RM+3.*STDR) 5,15,12
5 IF( PM+3.*STDP-RM+3.*STCR) 6,6,7GO
6 PRCB=1.U

RLTURN
rd. F(RM-3.*STOR-PMw1 713#7109720

71: I=IFIX(1').*( (RM-3.*STDR-PM)/STOP)-.5)
GC TO 7

72- I=IFIX( LC..*( (RM-3.*STOR-PM)/STOP)+.5)
7 IF(I 89,1J

8 PPDB=F(IUXERN,-1)
-.C. TO 15

r? PRCa3,5
C3O TO 15

j.T PRG3=1.-F(IL)XERN, I
CC TO 15

12 IF~3SD~PM3*TP A.5-J, .3,13

13

ii L=A,4X1,(QM-3.*STDRtPM-3.*STDP)
6U=AINIR M* 3 .ST CR, Pt1+3. *STOP)

tL-0M BL-RM) /STGR
HJRM= (U-RA) /STDR
BLl'Mz(BL-Pm) /STDP
3UPM=~(tBU-PM) /STDP

1) P=1 C. *BL PM
flXR=l --"BLRM
[F(STUR-STf)P) 23,23,25

L:,- STDP/S TDR
IF(f1XP) 231,231,232,

.4 CXP=FLOAT(IFIX(CXP-.5))
; C TJ

3.' XQ=FL04T(lIX(bXP4.5))-OIIA AEI

~ TO OF POOR QUALITY

(C. . =STDR/STOP
IF(DX'Ri 251,251,252

,-51 tLX~FLOAT(lFIX(DXR-.5))
UC TO 3^

S L.x-=FL0AT(IFlX(CXR+.5))



341

IF(INDXPU.GT.40) GO TO 165
INOXRL=IFIX(DXR.)
INDXRU=IFIX(DXR+CNR)

:: IFINDXRU.GT.43) GO TO 165
IF(STDR-STDP) 35,35,4U

35 OIFL=ABS(DXR-INDXRL).
OIFU=ABS(DXR+CNR-INDXRU)
GO TO 45

43 DIFL=ABS(DXP-INDXPL)
DIFU=ABS(DXP+CNP-INDXPU)

45 IF(INOXPL) 55,46,75
C INDXPL IS o, INDXPU IS POSITIVE ORO 0
46 IF(INDXPU) 47,47,48
47 X1=0.O

IF(DIFU.GE..1) XI=XL+DIFU*(.5-FIIDXERN1))
GC TO 50

48 X1=.5-F(IDXERN,INDXPU)
IF(CNP.EQ.1.) GO TO 95
IF(DIFU.GE..1) X1=XI+DIFU*(F(IDXERN,INDXPU)-F(IDXPU-FIDXERN,I

CNCXPU+1))
5 IF(DIFL-.1) 95,51,51
51 IF(DXP-INDXPL) 52,52,53
52 XI=X1+DIFL*(.5-F(IDXERN,1))

GC TO 95
53 X1=X-DIFL*(.5-F(IDXERN,1))

GO TO 95
55 IF(INUXPU) 60,65,70
C INUXPL AND INDXPU ARE BOTH NEGATIVE
6% KX=F(IDXERN,-INDXPU)-F(IDXERN,-INDXPL)

IF(CNP.EQ.1.) GO TO 95
IF(OIFU.GE..1U Xl=X1-DIFU*(F(IOXERN,-INOXPU)-F(IOXERN,

C-INDXPU+I))
IF(DIFL.GE..1) XI=Xl+DIFL*(F(IDXERN,-INDXPL)-F(IDXERN,

C-INDXPL+1))
GO TO 95

C INuXPL IS NEGATIVE, INDXPU IS 0
65 X1=.5-F(IDXERN,-INDXPL)

IF(CNP.EO.1.) GO TO 95
IF(DIFU-.1) 69,66,66

66 IF(DXP+CNP-INDXPU) 67,67,68
67 Xl=XI-DIFU*(.5-F(IOXERN,1))

SC TO 69
6 X1=XL+DIFUL*(.5-F(IDXERN,1))
69 IF(DIFL.GF..1) XI=Xl+DIFL*(F(IDXERN,-INDXPL)-F(IOXERN,

C-INDXPL+1))
GO TO 95



342

C INCXPL IS NEGATIVE, INDXPU IS POSITIVE
7-1 Xl)l.-F(ID(ERNt-INDXPL)-F(IDXERNIlNDXPU)

IF(CNP.EO61.) GO T0 95
IF(DIFL*GE..1) XltXl+DIFL*(F( IDXERN,-INDXPL)-F(IDXERN,

C-INOX0 L+l))
IF(0IFU.GE..t) XI=X1+D[FU*(F(IDXERNINDXPUkF( IDXERNI

CNnXPU+1fl
GC TO 95

C. BOTH INDXPL AND INDXPU ARE POSITIVE
75 *l=F(IDXERNINDXPL)-F(IDXERN,INDXPU)

IF(CNP.EQ. 1.) GO TO 95
Ir(DIFL.GE..1) X1=Xl-D[FL*(F( IDXERNINDXPL)-Ft IDXERNI

CNCXPL+ 1.)
IF(DIFU.GE.. 1) XI=Xl+DIFU*(F(IOXERNINOXPU)-F(IOXERNtI

CNOXPU+ 1))
'Th IF(INCXRL) 105,96,115
c Iil.XPL IS , INO)XPU IS POSITIVE OR 0

IF(INDXRJ) 97t97998
*9~7 )2=

I FUIFIJ.GE..1) X2=X2-(DIFU)*(.5-F(IDXERN,1) ))*.5

2;C TO 1%
,1p A?=(.5+F(I0XERNINOXRU))*.5

IF(CNR.FQ.1.) GO TO 145
IF(V)IFU.GE.. 1) X2=X2-(UIFU*(F( IDXERN, INDXRU)-F( IOXERN,

t.INCXRU4I )))*.5

I i. lF(1R-4DXL) 132tl)2,103
I .- X2=X?-+(DIP-L* .5-Fl IDXERN,1l) ))*.5

.f. TO 145

GC TOJ 145

C 14_44L IS NEGATIVE, INODXRU IS 0
i+( X2=(1.5-F(IUXERNv-INFrXRL))*.5

IF(~R.Q~l) GC TO 145
IF(P1FL.(;F..fl X2=)(2+(OiFL*(F( IOXC-RN,-INDXRL)-F( IDXE.RN

p-17._XRL+l ) ))*.5

IF(rLXh+CNR-INZXRU) l, 7q15C7,lSj8
1.. 1 X2-zX2+(D)IFU*( .5-F(IDXERN,1)) )*,5

CA' f.' 145
1 /2"=X2-fUIFU4,( .5-F-(IOX AN,1) ))*.5

;02 TO 145
C I .rXR'.j ANU INGXRL ARE NEGATIVE
I>i (.?=t.-(F(IXER.J , I"!OUXRL)+F(IOXE=RN,-INOXRU))*.5



-343

IF(CNR.EQ,1.) Ga TO 145
IF(DIFL.GE..l) X2=X24(OIFL*(F( IDXERN,-INDXRL)-F( IDXERN

C,-[NDXRL+l ))l*5

IF(OIFU.GE. .1) X2=X2+(OIFU*(F( IDXERN,-INDXRU)-F( IDXERN
Ct-INDXRU*1 )))*.5

GO TO 145
C [NLDXRL IS NEGATIVE,1NDXRU IS POSITIVE
112 X2=(i.-F(IDXERN,-INDXRL)+F(IDXERNINDXRU))*.5

IF(CNR.EQ.1.) GO TO 145
IF(DIFL.GE..,) X2=X2+(CIFL*(F( IDXERNI,-INDXRL)-F( JOXERN

Cv-INOXRL.l )fl*,5

IF(DIFUGE.,l) X2=X2-(OIFu*(~IDXERNINDXRU)-F(IDXERN,
CINDXRU+l )))*.5

GO TO 145
C BOTH INUXRL AND INOXRU ARE POSITIVE
115 X2=(.F(IDXE RN,INDXRL)+F(IDXERNINDXRU)W*.5

IF(CNR.EQ.1.) GO TO 145
IF(DIFL.GE..l) X2=X2-(DIFL*(F( IDXERN, INDXRL)-F( IOXERN,

CINDXRL+l )).

IF(OIFU*GE..l) X2=X2-(OIFU*(F( IOXERNINDXRU)-F(IOXERN,
LINDXRU+l )l)*.5

1.45 x~X1*x2
[F(X.GT..%3'CCO)l) PROB=PROB+X
CXP=DXP+CNP
UXR=)XR+CNR
IF(C\IR-CNP) 160,150915C

15-.; IF(OXRIO0.*BURM) 3093C,155
155 RETURN
i6.' IF(DXP-1O.*BUPM) 3kC,3),165
165 RETURN

E N U



344

SU",ROLITINE LLS(KEYJOB)
CU~'vvON/tLK7/J( 27,64)
-Cr'MN/B3LK8/ ICLK

C~Al/L(2IECSZ,[ICCNt 1111, 1FECSZq IPC T, I Pl,IP21 IC1, I
C~2,103, IR,'IS,1 TAMINB3tKNMCT*fMMST,MTOTALNI ,NIQS,

*VL j,NPCL,NPCS, NCPUS,lFEDBK,lRNlIRN29IRN39IR
,.i 4, TN5,1RNb,IRN7,IRN8,IRN49, MMAPF,MMSPF

C p'jRPl-,RP11

CC i;K 3/3LKI 6/ 1BWC TR (24) , ICEC (5 t40) , ICECS,[ICPU (13 ) 9 1PA S
IFECS,IFEcC(42),4),IPROS(16),ISAVE(393),IVAL

~3V(),MAC(25,5), MALCSI'AS(24),MAVL(128,5)9MAVL

vi..4 )),:43L K 12 8)NF3()NJ 4Y, NSCHED, pP w
, .) NTP(24) , NTR (24 ,NuC4 (24)

~ ~Ir~-~--.CPUlP4SSlFFCL-S1FECv1PR0
-qISA yE ,IV LCV ,MALC,MPALC , MAS, M4VI, "AVLS ,MOD)

TLM NNAAA3, AG;,NAML,Nt3LK,NFB,NJWMINSCHED,

14 e t)<2 J , JfVFL ,IC LK
I L Fr, SI 14' 1 HOL C(6)

Y I =n 1 /01TEk~ INITIATIO)N
2 =/ I/f' 11 RRUPT COMP1LETION
I z~ JOB COMLET~n.

[C?$f4T( ILLSJ0V,i,4vl KEY=',I3,'I!,ASS(1-4),I,;'dSk

FJ~i~LtXI 17)

F T I 16( X , 13 2

,4i.L b-flAPr' %J"B, ),N>A TN!)
J (J (27 , Jr

-IL f'iCK(',J27, L29, 12E)

ML UIX( 796,J279INL7)OIGJA
1'~.~Oi) L T ~ORIIA PAGE~ L3jlt TO~ 9 O POOR QUALIy

j : N-I P 2 2 ,.,2



345

IF(NMATNI-IN1) 10,200,200
9 CALL PACK(0,J27,0,64)

J(27,JOB)=J27
GO TO 12

1Q CALL PACK(:,J27,32,32)
J.(27,JOB)=J27

12 J27=J(27,JOB)
CALL UNMIX(11,10,J27,IND11)
IF(IND11) 20,230,30

21- IF(IPASS(9)) 70370,55
30 IF(IPASS(9)-3) 70,50,50
5. CALL CKIOS(0GJOB)

CALL CKIOS(3,JOB)
55 CALL CKIOS(O,JOB)
61 CALL PACK(O,J27,2048,2060)

J(27,JOB)=J27
6: CONTINUE
6C1 FORMAT(' EXIT LLS AFT I/O INT.INIT.,JOB=',I4,' IPROSCI

CCPU ARE')
RETURN

7, CALL PACK(3,J27,8,8)
J(27,JOB)=J27
NP=ICECS

72 IF(ICEC(2,NP)-JOB)74,80,74
74 NP=ICEC(5,NP)

GO TO 72
80 IACT=ICEC(4,NP)

CALL PACK(O,IACTtO,3)
ICEC(4,NP)=IACT
IPASS(3)=IPASS(3)-1
GC TO 600

2C J27=J(27,JOB)
C PRIORITY OF JOB,P,NU. JOBS AWAITING CPU)Q,NO. I/O OPS)N

CALL UNMIX(11,10,J27,IND11)
IF(IND11) 205,205,503

2K5 INCEK=ICECS
21" IF(INDEX) 215,215,220
215 CALL CKCPU(JOB,O)

GO TO 12
22i NJOB=ICEC(2,INDEX)

NJ27=J(27,NJOB)
CALL UNMIX(5,4,NJ27,IN05)
IF(IND5) 230,230,225

225 INDEX=ICEC(5,INDEX)
GC TO 210

23. CALL UNMIX(3,2,NJ27,IN03)



346

IF(IND3) 225,225,235
235 CALL UNMIX(2,1,NJ27,1NC2)

IF([ND2) 240,240,245
243 IF(IPASS(4)-NI) 245,225,225
245 CALL UNMIX(l1,1.,NJ27,IND11)

IFIND011) 250,250,300
25c CALL CKCPU(JOB,NJOB)

IFINU2.EQ.Z) IPASS(4)=IPASS(4)+1
26?. l ASS(3)=IPASS(3)+1

CALL PACK( ,NJ27,2,254)
J(27,NJOB ) =NJ27
I4CT=ICEC(4, INDEX)
CALL PACK(',IACT,2,3)
IC:C(4, INDEX)=I ACT
;C TO 12

S NFrkE=C
DC 3~1 KKK=1,NCPUS

31 IF(ICPU(KKK).EoQ.)) NFREE=NFREE+1
IF(NFRFE-2) 310,35,3,5
5 L^,LL CKCPU(.I,NJOB)
CA LL CKCPU ,NJOB)
:;0 TU 252

. ., CALL LA'T3 (NJOB,0, NO1,N12, N2.3,JOBPT,JOB)
3115 IFivFREE) 350,350,320
32 IF(F'.1) 225,225,325
32? CALL CKCPU(,,NJB)

G;C TO 360
25. IF ' -2 2) 225,225,355

).) J. L=ICEC(2,Nj2)
CALL CKCPU(JOBB,JOB)
J2 lA=J(27,JOBB)
CALL PACK(C,J2711,68,68)
J( 2 7, JO ) =J27B
I ACT=ICEC(4,NJ2)
CALL PACK(3,IACT, ,3)
ICEC(4,N02)=IACT
i., S(3)=IPASS( 3)-1

S J A= I C EC( 2,N1) OPJGINAL PAGE
LALL CKCPU(JOAANJOB) OF POOR QUAll
J? A=J(27,JOOA)
CALL P'-CK(-,J27A,68,68)
3 P7,JOBA)=J27A
IA T=ICFC( ,,N?1)
LiLL PACK( ),1ACT,-,3)
I. C ( 4., 1 1 = I AC T

;' i )=I PASS(3)-1



347

GC TO 250
C JOB IS A TMR JOB,.3 CPUS RELEASED
50J INDEX=ICECS

00DO 505 KKK=1,6
5U5 IHOLD(KKK)=O
51 IF(INDEX) 555,555,515
515 NJOB=ICEC(2,INDEX)

NJ27=J(27,NJOB)
CALL UNMIX(5,4,NJ27,1N05)
IF(IN05) 520,520,550

52i CALL UNMIX(3,2,NJ27,IND3)
IF(IND3) 550,550,525

525 CALL UNMIX(2,1,NJ27,1N02)
IF(IND2) 530,530,535

53J IF(IPASS(4)+IHOLD(4)-NI) 532,550,550
532 IHOLD(4)=IHOL(4)+1
535 CALL UNMIX(11,L0,NJ27,IND11)

IF(IND11) 540,540,545
54. IHOLU(5)=IHOLD(5)+i

IHOLD(IHOLD(5))=INDEX
[F(IHOLD(5)-3) 550,565,565

545 CALL CKCPU(JOB,NJOB)
CALL CKCPU(JOB,NJOB)
IHOLD(5)=1
IHOLD(1)=INDEX
GO TO 565

55) INDEX=ICEC(5,INDEX)
GC TO 510

555 IF(IHOLD(5)-1) 556,558,56C
556 CALL CKCPU(JOB,O)
558 CALL CKCPU(JOB,0)
56J CALL CKCPU(JOB,0)
565 THOLD(6)=IHOLD(6)+1

IF(IHOLD(6)-IHOLD(5)) 570,570,12
57 INDEX=IHOLD(IHOLD(6))

NJOB=ICEC(2,INDEX)
NJZ7=J(27,NJOB)
CALL CKCPU(JO8,NJO)
CALL UNMIX(2,i,NJ27,IND2)
IF(IND2.EQ.3) IPASS(4)=IPASS(4)+1
IPASS(3)=IPASS(3)+1
CALL PACK(3,NJ27,3,255)
J(27,NJOB)=NJ27
IACT=ICEC(4,INDEX)
CALL PACK(:,IACT,2,3)
ICEC(41INDEX)=IACT



348

GO TO 565
C I/ INTERRUPT COMPLETION-COMING FROM PROGRAM EXECUTOR
1X;J J27=J(27,JOB)
1103 FORMAT(a LLS WILL NOW CALL SHAPE TO UPDATE NIP FOR JOB

C',4, ' 13003')C

CALL SHAPE(JOB,1,NMATNI)
CC 105 KKK=1,6

13.5 IHLLD(KKK)=0
CALL CKIOS(JOB,3)
CALL UNMIX(14,13,J27,LOAD)
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)-1
CALL UNMIX( 11,13,J27,INOI)
IF(INDI ) Il1l,1010,1015

1 1. NFREE=0
CC 1'12 KKK=1,NIOS

1 12 IF(IPROS(KKK).EQ.3) NFREE=NFREE+
F(NFREE-2) 1020,12]0,1C20

1.15 CALL CKIlS(JOB,C)
CALL CKInS(JiC)
IF(LOAD.EC.1) IPASS(5)=IPASS(5)-2
NFRE =3

IC. I. I 'EX=ICECS
1. 25 IF (INDEX) 1.6C,1361, 13 32
1 3i, NJOB=ICEC(2,INDEX)

NJ?7=J(27,NJOb)
CALL UNMIX(5,3,NJ27, IN54)
IF ( IN 54-1) 1'35, 1137,1535

1 "5 I N EX=ICEC(5, IN[EX)
.J TO 1325

V! 7 CALL UN-MIX(14,13,NJ27PLOAD)
IFILOAP) 140, 14:,1(38

1 IF(IPASS(5)-IQ2) 1040,14 ,1035 ,D.
1.4' CALL UNMIX(11,1D,NJ27,IND11) P' PO Q ,,

IF(IN:II) 1,J5 , 1051,1345
1i IF(CFkFE.LT.3) GO TO 1C35

CALL CKIOS(UNJOB)
CA!_L CK I OS(3,NJO )
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+2

I L,( ) = I NDEX
:,C TO 196:

S . If'fLU(5)=IHOLC(5)+1
1I:,.LD(IHOLO(5))=INDEX
IF( IHOLD(5)-3) 1'J55, 1i6 , 106,7

i.f I R(FREE-1) 1 '6 , 1 I6!, 1,335



349

10b0 IHOLD(6)=IHOLD(6)+1
IFIHOLD(6)-IHOLD(5)) 1C65.1065,1200

1n65 INDEX=IHOLD(IHOLD(6))
NJOB=ICEC(2,INDEX)
NJ27=J(27,NJO8)
CALL CKIOS(O,NJOB)
IPASS(3)=IPASS(3)+1
CALL UNMIX(14,13,NJ27,LOAD)
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+1
CALL PACK(0,NJ27,2048,2056)
J(27,NJOB)=NJ27
IACT=ICEC(4,INDEX)
CALL PACK(O,IACT,2,3)
ICEC(4,INDEX)=IACT
GO TO 1060

C RESET JOB'S STATUS, RESET IPROS IF NECESSARY
C LOUK FOR CPU(S) FOR JOB, GET OUT
12,, J27=J(27,JOB)

CALL PACK(O,J27,0,2176)
J(27,JOB)=J27
CALL UNMIX(6,5,J27,IND6)
IF(INO6) 1210,1210,L205

12~3 CALL PACK(3,J27,0,32)
J(27,JOB)=J27
GO TO 1603

121, NFREE=<
UO 1212.KKK=1NCPUS

1212 IF(ICPU(KKK).EQ.O) NFREE=NFREE+1
CaLL UNMIX(11,lC,J27,IND11)
IF(IND11) 1285,1285,1215

1215 [F(NFREE-3) 122 ,1295,1295
1223 NFED=3-NFREE

CALL LAST3(JOs,C,N01,NO2,NO3,JPNTJOB)
IF(NEED-2) 1260,1255,1225

1225 IF(NO3) 1265,1265,123C
1235 NJJB=ICEC(2,NZ3)

CALL CKCPU(NJOB,JO8)
NJ27=J(27,NJOB)
CALL PACK(V,NJ27,68,68)
J(27,NJOB)=NJ27
IACT=ICEC(4,Ni3)
CALL PACK(0,IACT,j,3)
ICEC(4,NO3)=IACT
IPASS(3)=IPASS(3)-I

1235 NJCB=ICEC(2,NO2)
CALL CKCPU(NJOB,JOB)



350

NJ27=J( 27,NJOB)
CALL PACKVl*NJ27168968)
J( 27,NJOB) =NJ27
I ACT =ICE C ( 4.N 2)
CALL PACKL),[ACT,~30)
ICEC(4,N92 )=IACT
IPASS(3)=IPASS(3)-l

~''NJO3=ICEC(?,NQI)
1?45 LALL CKCPU(NJOB,JOB)

NJJ7=J(C27,NJOI3)
CALL PACK(^;,NJ27,68,63)
if 27tNJOB) =NJ27
IACT=lCEC(4,N'I.)
CALL PACKV),IACT,),3)
ICEC(4tNO1 )=IACT
lfPASS(3)=IPASS( 3)-i Okk3IN~ pG,

2 5 ALL UNMIX(2,lvJ27,IND2) Op Pop
IF(1ND2.EQ.1) GO TO 1251QU
SP AS S(41=1 PA S S4+
, CALL' PACK(-,J27,2,8198)

J (27, i) =J27
,;f' To0 1b0 C-

~2-~I(. 1265,1265,1257
:?r7 CALL CKCPtJ(C'JOB)

GLu TC, 1235
SIF(Pq)1) 1265,1265,128)
' CALL LAST3I(JOB, 1,NOL,NC2,N"3,.JPNT,JOB)

IF(A'1) 1275,12759127-'4
121- NJJB=lCFC(2,N~l)

(ALL CKCPU(NJOB,JOB)
CALL CKCPU('NJ(J,JOB)
UL TO 1245

i 7 5 CALL PACK(,,jJ27,4,Rlq6)
if 27, JOB)=J27
14iT=ICFC(4,JPNT)
i(A-LL P'ACK(),IACT,V",3)
TC-.C(4,JPNT) =IACT
I P A 'S C3) =IP AS S( 3)-I
;L) TO 16:Z C

- s.c CALL CKCPU,tJOB)
kCALL CI(CPU(,JOB)

STO 124)
Z"3 IW(JFREE) 129(1129),131%

C;m>C.L LAST3 (JOBC,,NC 1,N0 2,N03, JPNT, JOB)
IF(NV1) 1275,1275, 124-
; CALL CKCPL(JtuJOB)



351

CALL CKCPU(0,JOB)
1363 CALL CKCPU(O,JOB)

GO TO 1250
16C00 CONTINUE
1605 FORMAT(' EXIT LLS AFT 100 CMPLT,JOB=,I4,' IPROSEICPU

CARE')
RETURN

C JOB COMPLETION
20C0 J27=J(27,JOB)

CALL UNMIX(11,1J27,IN11)
IF(INC11)2302,2002,4000

C THE JOB IS SIMPLEX
20C2 'CALL UNMIX(8,7,J27,1N08)

IF(IND8)2005,2005#3000
C JOB IS CPU MODE
2205 NJP=ICECS

GO TO 2010
2^-48 NJP=ICEC(5,NJP)
201' IF(NJP) 2850,2850,2012
2012 NJOB=ICEC(2,NJP)

NJ27=J(27,NJOB)
CALL UNMIX(5,4,NJ27,1N05)
IF(IND5) 2008,2013,2008

2013 CALL UNMIX(3,2,NJ27,lND3)
IF(IND3)2)08,2008,2014

C NJOB IS AWAITING CPU
2':14 CALL UNMIX(I1,1U,NJ27,IND11)

IF(IND11) 2016,2016,2100
C NJUB IS SIMPLEX
2)16 CALL CKCPU(JOBNJOB)

GO TO 2875
C IJOB WAS TMR
212J NE=C

CC 2104 I=1,NCPUS
IF(ICPU(1))2104,21f2,2104

21,-2 NE=N+1
21C4 CCNTINUE

IF(NE-2)22)0,2106,2106
C TWO CPUS ARE EMPTY(R MORF)
21:6 CALL CKCPU(O,NJOB)
21C8 CALL CKCPU(O,NJOB)

GO TO 2016
C LESS THAN 2 CPUS ARE EMPTY
22 , CALL LAST3(NJOB,ONO1,N 2,NO3, JOBPT,JOB)

IF(NE)2225,2220,2210
C ONz CPU IS EMPTY



352

221i, IF(N'01)2008,2C 8,2212
C N,1 IS BUUNCABLE-CAN FIT JOB IN
C NOW FIND NAMES OF N01
2212 JOBI=ICFC(2,NOI)

CALL CKCPU(JOB1,NJOB)
C NOW UPDATE JOBI-SET 3 AND 7

J27=J(27,JUB1)
CALL UNMIX(3,2,J27, ND3)
CALL PACK(O,J27,68,68)
J27,JOBl) =J27
IACT=ICEC(4,NI)
CALL PACK(,IACT,',3)
ICEC(4,N )=IACT
IPASS(3)=IPASS(3)-I
IF('AE) 2016,2016,2108

C O CPUS ARE EMPTY
22" IF(N:2)20 3 8,2;L'8,2222
C TWJ JC~S ARE BOUNCABLE
2222 JCB2=I CCC(2,N.)2)

CALL CKCPU(JO2,NJOB)
J27=J(27,JOB2)
CALL PACK(),J27,68,68)
J(27,JOB2)=J27
IACT=ICEC(4,NJ2)
CALL PACK(',IACT,0,3)
ICEC(4,N!\2)=IACT
lPASS(3)=IPASS(3)-l
GO TO 2212

C UPA4T. ICPU WITH ZERO-NOTHING TO REPLACE JOB IN CPUS
. , CALL CKCPU(JOB,C)

GC TO 9999
C UPiAT- NJOB
',775 LALL UNMIX(2,l,NJ27,1ND2)

IF(IN.2.EQ.f) IPASS(4)=IPASS(4)+l
CALL PACK(7,NJ27,2,70)
J( 27,NJOB)=NJ27
IACT=ICEC( ,NJP)
LALL PACK(",IACT,2,3)
ICC(4,NJP )=IACT
IPASS(3) =IASS(3)+1
,( TC 9999

, Or, qAS I/O, J B3 WAS SIMPLEX
. - 'JP=ICECS

r, TC 3"'!4

.2 . '.JlP=ICEC(5,NJP)
3 4 IF('1JP) 3r' 6,3J:6, )2:



353

C COULD NOT FIND JOB TO TAKE PROCESSOR
30G6 CALL CKIOS(JOBO)
30~7 CALL UNMIX(6,5,J27tINO6)

IF(IND6) 9999,9999,2005
C IS NOT END OF CHAIN-NJP POINTS TO NJOB
30212 NJOB=ICEC(2,NJPI

NJ27=J(27,NJOB)
CALL UNMIX(5,3,NJ27tIND54)
IF(IND54-1) 3302,3022,3002

3022 CALL UNMIX(14,13,NJ27,LOAD)
IFILOAD) 3024,3024,3023

3C23 IF(IPASS(5)-I02) 3024,3002,3002
C NJOB IS WAITING IOP AND NOT WAITING MEMORY
3.24 CALL UNMIX(11,10,NJ27,IND11)

IF(IND1)3326,3026,3100
C NJOB IS SIMPLEX AND NEEDS I/O PROCESSOR
3"26 CALL CKIOS (JOBNJOB)

.CALL PACK(0,NJ27,2048,2056)
J(27,NJOB)=NJ27
IACT=ICEC(4,NJP)
CALL PACK(OtIACT,2,3)
ICEC(4,NJP)=IACT
IPASS(3)=IPASS(3)+1
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+1
GO TO 3007

C NJOB IS TMR JOB-CHECK FOR EMPTY I/O PROCESSORS
310j NEMTY=O

CO 3104 I=1,NIOS
IFf-IPROS(I) )3104,3102,3104

31L2 NFMTY=NEMTY+1
3104 CCNTINUE

IF(NEMTY-2)3006,3110,3110
C WE HAVE 2 (OR MORE-MORE IS BAD) EMPTY I/O PROCESSORS
311-3 CALL CKIOS(O,NJOB)

CALL CKIOS(G,NJOB)
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+2
GO TO 3026

C JOU IS TMR JOB
4'C( CALL UNMIX(8,7,J27,IND8)

IF(IND8)4C02,4902,4500
C JOR IS CPU MODE-SEARCH FOR 3 HIGHEST PRIORITY JOBS
C WHICH WANT CPUS-IF ONE IS TMR, GIVE IT TO HIM OTHERWISE
C GIVE TO 3 SIMPLEX-INITIATION IRRELEVANT
4, 02 NJP=ICECS

DC 4j03 KKK=1,6
4:v3 IHCLD(KKK)=O



354

NRUY=.
GC TO 436

4, 4 NJP=ICEC(5,NJP)
4,,6 IF(NJP) 43%0,43C0,4007
4> 7 NJOB=ICEC(2,NJP)

NJ27=J(27,NJOB)
CALL UNMIX(5,4,NJ27,INDS)
IF(IN05) 40C8,4C08,4004

4:C8 CALL UNMIX(3,2,NJ27,ING3)
IF(IND3) 4'04,4004,4C12

C WE NOW HAVE AN ACCEPTABLE JOB-IT WANTS A CPU
4.12 CALL UNMIX(11,10,NJ27,IND11)

IF(IN011)4,14,4Cl4,41C
C NJIh IS SIMPLEX
4014 NLRY=NRDY+1

IHCLD(NRDY)=NJP
IF(NRDY-3)404,4016,4r^L6

C WE HAVE FOUND 3 SIMPLEX JOBS WANTING A CPU-FIND NAMES
C tUP[.ATE, PUT IN CPU
4'16 00 4330 I=1,NRDY

NJOH=ICEC(2,1HOLD(I))
NJ27=J(27,NJOB)
CALL UNMIX(2,1,NJ27,1NC2)
IF(IND2.EQ.) IPASS(4)=IPASS(4)+1
CALL PACK(?,NJ27,2,254)
J(27,NJOB)=NJ27
CALL CKCPU(JOb,NJOB)
IPASS(3)=IPASS(3)+1
IAuT=ICEC(4,HOLD(I))
CALL PACK(3,IACT,2,3)

43. ICEC(4,IHOLD(I))=IACT
GC TO 9999

C FfUbND ACCEPTABLE TMR JOB-NAME NJOB,INDEX NJP CN ICEC
4iL. CALL CKCPU(JOb,NJOB)

CALL CKCPU(JB,NJOB)
CALL CKCPU(JO$,NJOB)
IACT=ICEC(4,NJP)
CALL PACK(:,IACT,2,3)
ICEC(4,NJP)=IACT
LiLL UNMIX(2,I,NJ27,IND2)
IF(IND2) 41-5,4105,4110

41.5 IPASS(4)=IPASS(4)+1
411e IPASS(3)=IPASS(3)+1

CALL PACK(',NJ27,2,254)
J(27,NJOB)=NJ27
3G ro 9999



355

C FOUND END OF CHAIN BEFORE TMR OR 3 JOBS
43C' IF(NRDY-1)4302,4306,43C8
C NO JOBS FOUND
4302 CALL CKCPU(JOB,O)

CALL CKCPU(JOB,O0)
CALL CKCPU(JOB,O)
GO TO 9999

C ONE JOB FOUND
4306 CALL CKCPU(JOB,0)
C FOUND 2 SIMPLEX JOBS WAITING CPU
4 3C8 CALL CKCPU(JOB,C)

GO TO 4016
C JOB IS TMR AND RELEASING 3 I/O PROCESSORS
4522 NJP=ICECS

00 4501 KKK=1,6
45.1 IHCLO(KKK)=%

NRDY=G
GC TO 4510

4505 NJP=ICEC(5,NJP)
451,- IF(NJP) 4600,4600,4515
4515 IJOB=ICEC(2,NJP)

NJ27=J(27,NJOB)
CALL UNMIX(5,3,NJ27,1ND54)
IF(IND54-1) 4535,4517,4505

4517 CALL UNMIX(14,13,NJ27,LOAD)
IF(LOAD) 4520,4520,4518

4518 IF(IPASS(5)-102) 4520,4505,4505
C NJOB IS WAITING IOP AND NCT WAITING MEMORY
4520 CALL UNMIX(11,10,NJ27,IND11)

IF(IN011)4525,455C,4525
C NJOB WAS TMR
4525 CALL CKIOS (JOB,NJOB)

CALL CKIOS (JOB,NJOB)
CALL CKIOS (JOB,NJOB)
IACT=ICEC(4,NJP)
CALL PACK(O,IACT,2,3)
ICEC(4,NJP)=IACT
IPASS(3)=IPASS(31+1
NJ27=J(27,NJOB)
IF(LOAD.EQ.1) IPASS(5)=IPASS(5)+1
CALL PACK(O,NJ27,2048,2056)
J(27,NJOB)=NJ27

453' CALL UNMIX(6,5,J27,IND6)
IFiIND6)4535,4535,4002

4535 GO TO 9999
C NJuB w4S SIMPLEX



356

455J NRDY=NRDY+1
!HOLD(NRDYI=NJP
IF(NROY-3)4505,4560,4560

C HAVE FOUND 3 SIMPLEX JOBS WANTING I/O PROCESSORS
456' 00 4590 I=1,NRDY

NJOB=ICEC(2,tHOLD(I)l
NJ27=JI27,NJOB)
CALL PACK(O,NJ27#2048,2056)
J(27,NJOB)=NJ27
IACT=ICEC(4,IHOLD(I))
CALL PACK(0,IACT,2,3)
ICEC(4,IHOLD(I))=IACT
IPASS(3)=IPASS(3)+1
CALL UNMIX(14,13,NJ27,LOAD)
IF(LOAD.EQ.1) IPASSIS)=IPASS(5)+I

459j CALL CKIOS(JOB,NJOB)
GO TO 4530

C CA'E OUT OF CHAIN BEFORE FINDING 3 SIMPLEX JOBS
46C0 IF(NRDY-1)4A5,4615 625
C NO JOBS FOUND
4645 CALL CKIOS(JOB,U)

CALL CKIOS(JOB,C)
CALL CKIOS(JOB,O)
GC TO 4530

C I JCB FOUND
4615 CALL CKIOS(JOB,C)
4625 CALL CKIOS(JOB,O)

GC TO 4560
9999 J27=J(27,JnB)

CALL PACK( ',J27,0,23S3)
J(Z7,JOB)=J27

8HS5 FCORMAT(' EXIT LLS AFT CPPLT OF JOB',I4,§IPROS&ICPU ARE
C')
RETURN
EN



357

SUBROUTINE PFX(IDXGAU)
C PEX EXECUTES PROGRAMS BY GENERATING A RANDOM NUMBER
C OF '-'MO(RY ACCESS REQUESTS FOR EACH ACTIVE JOB. IT THEN
C GATS A U!UMBER OF ACCESSES FROM EACH VEMORY MODULE
C TO ECH ACTIVE JOB ON THE BASIS OF THE NUMBFR
C RE.,UESTEC, JOB PRIORITY AND NUMBER OF AVAJLABLE FROM
C EACH MODULE. IT ALSO KEEPS UP WITH THE EXECUTION
C POINT OF EACH PROGRAM ANU A PREDICTION OF THE
C 'U',BEP OF AVAILABLE ACCESSES FROP EACH MEMORY MODULE

CCfVMON/fLK3/ IDIST(25),F(25,41),NDIST
CC.MJN/LK7/J(27,64)
COFMON/PLK/ ICLK
COMMON/BLK2/ICECSZ, ICO, Ni, IFECSZ PCT, PI, IP2, Cl, I

C';2, I, IR, IS,ITA,MI:NLK,MMCTMMST,MTOTALNI ,NIOS,
L"vr'OS,NPCL,NPCS, NCPUS,IFEDBK, IRN, IRN2,IRN3,IR
C'4, I , I RN6,IRN7, IR.,IRN9, MMAPF,MMSPF

CO t'0n"/HLK 13/R -  , Ro .!2,RPo3, RP"4 ,RP.5,RP06,RP37 , RP28 A, R
LP '), RPl,RP12

LCM V ; / L K 16/ I BWCTR(24) ICEC(5,4"), ICECSICPUI")),IPAS
CS(? ), IFECS,IFEC(49,4),IPROS(16),ISAVE(3,3),IVAL
.OV(1 IsI'MALC(256,5) , M4ALCS,MAS(24),MAVL(128,5),MAVL

C ,OD1 (24) ,MTP1t24) ,NA (24), NAA(24) , NA , AGNA
cN L( , ) ,NLK(28) ,:FB(3) ,NJWM,NSCHFD, NREQ(4

4 , / ) ,NTP(24) NTR(24) ,NUCA(24)

I;,TEER*'2 1I CTR,ICEC,ICE CSICPU,IPASS,IFECS, IFECIPRO
.S, ISAVE,IVALOVMALC,IALCSMASMAVLMAVLSMOO
, ', " T P ,N t I, A A , NA B, NAG,NAML ,NIviLK, NFB,NJWM, NSCHEC,

,, - , T : ) 9T R , UCA
CCP :/F LK 17/ I STCNT, I STAT(6,4C.) , IUTL(6,2' )
I TEG ER*2 ISTATIUTL
C. ["N'/ :'.. BLK18/ AN, CUJU,PLU,BWU, SPU,CFCUU,BPUU, BFi U,BSoU,A

CCUl, AP(JU, AbWU, ASPU,BCjSIZ, AOSIZ

Ii:T iER:*2 J,JrVFL, TCLK
.IV C SION iSPACE(24)

IH TG-(;ER%*2 ICO\LJ, MO S T Z, SPACE,JMST;aT,I ACIS, I NP,HF I X
'nrlr SIZ=MTOTAL/NMUL)S
I C(.! i41 =I CO N/M i;C T
CALL UI IIAX(2, , IS, I1RTB)
I L 1 = I C L K - I P S ( 6)

IF(I . . : . '.ANJ.I ND1.NF. ) CALL CEC(4,D)

6dPSGAt pGFIs

?oO'% 1~4~



358

I,, =ICLK-(TCIL/K ) '*1.
IF( I , ,.N. ) C TO 4
,, ZITL (C 5 ) ICLK,(IP ASS(KKK),KKK=1,1')

I Fl '.. (' II M 9PEX-TI 1EI PASS(1 - 1 ' )  AR E',11(1X,14))

A T.L=
I = IC C .

IFf1) 5,5,7
, IT= (e,6)
-: AT(' I =C .,'S .MPTY UP['N "-,TFmING P-- ')

' - T
7 r'" 1 i = ,tV lf

T (IY)=
T ( i'v)=

,. I/= ,ICECSZ
: (I!,IY)=T I' Ti 1 -

IC C(4,

I ( I -1 ) 5 4?
' ,I )

J . C = 
9

. , ) O G RAL PAG~

•i ,r--

OP0:.s Be QUJAL17
J -J( .J'A J

, .r, .,,. ) T " _

I ( Lf ) I , ,: .

T- LC (.S L1,?) ' , l7 1

I' I T

IS Y= +iTI" ':

S , . . (N L K ,: . L , ( ' ,, '. )

T 1 '



359

S MSPACE(MODSTI=MSP4CP (MOOST)+MtALC(MBLK#5)
GO 10 592

591 MSPACE(MODST)=SPAC(moDST)+KT=MP2-MAL C(MBLKv3)
1 9 GO T-1 (6%,7%.,C0,92),KCNT
6. Jl,4=J(19vJNAM)

KCNT=2
CALL UNMIX (8,0, J19,MBLK)
IF(MbLK.NJ,,C1 GO TO 55

7%, Jll=J(17, J6J4M)
KCAT=3
CALL UJNMIX(,1,:,lJ179MBLKU)
CALL U;',1U (129,J1), mBLKL)
M LK=N'BLKU*,1 6+N'E3LKL
1F(N bLK.N'F,,) GO TO 55
~J Z=J(2iJNAM)

CALL UNMIX ( 87, J2iMSPIL) -4 , P

C!%LL fVFLM(: *IJN4M,S, IVALUV,lrt

S rLK=IVAL0V( IX)
IF(3L~.di.)GO Tn 55

IX=I,(+t

1. FC:* \i'( 36H MORE THAN 1, BLnCKS ASSIC.A'ED TO JOB, 17)
1 .5 J f' T,) r =.

tH) I '>. y=t,.,ir)DS
J"' I = J IT ' T U J T +!,I+SP AC E(IY)
Cr 'rTIIIJE
N FA/L=VAL+JMSTT

IFP (;4-.5-) 114,112,11
I1X I' (FI X (r8 IR AN-. 5))+
4L'UKF ( IrDX VAIJ, I NFI

TG r 1.13

J ? -1=J I ;,7, JNA'4)

C .4 L U .!;1 I X J&,7 J'. 1 1N



-360

J1A2=J( 12qJNAM)
C ALL UNMIXf1 ,r)JI2,ttUSI
STD=FL-A T ( I ND S
AtM=FLOAT( 1ND10)
l-NtC-S=IP)3S( IFIX(VALUE*STO+AM) )
GO~ TO 14'.

3, J27=Jt27,JNAVM)
CA~LL U JU1I~l4t13,J27#LUAD)
IF (LiJAL) 132,1 32,131

131 J17tJ( 17,J NAM)
CA8LL UN;1lX( 11,.)pJ17v'oMS)
IA~cs( C *.S/tSI

GOf Til 141
I !? J13=J(13,JNAM.)

CALL UNMI X( 1~ ,iJi39, NLNh;)
J 21= J (21 ,J' A"~)

ST J=FUC; T1 INUS)

IACCcV:=I1''(FIX(VALUE*STD+AM))
14 L:1Ff=J(26Ji,I4 )-J( 18,JNAM)

lF (I 't.uSI ~IFF) 14?, 144,l43

L~ 4 4C.=IF-P

C ALL UNM1KL '5,7,jl1 , 1 Jl)
I :' 111 I ., '
I F GEi..T .2. 1 ;0 To 7'.0
J,'.-7=J (7, JA 1)
CALL u~J'IX (il,1. ,j27 ,lN-,.,1 1)

I CC :3 * I UC.)

1, It tP A C K)) 1:7 , 157 ti

I F (J't2T'. ) (. Tfnl i(2
-z 'I I,JX)=($-If)C'L(JX)",1ACCS+JMSTOT-1)/JMSTOT

j T (6), S .1) 1 CLfK,T 1 , (.(KKK , I),KKK= , 5)

3 :T (JX)= lJT+(JX)+:jAk0(IJix)

JT C I = A T: (X )7 , J .4

ORIGINAL PAGE IS
OF POOR QUALMT~



361

CALL U.,,MlX(14,13,J27LlAD))

I. 1rflTA=J ( 26,9JNAM)

71. , fI \T=JoC , Jr A ) +J (15, JNAMY)
ltcs J17=iC 17,JNAM)

ISTT=1'MSJ(LR,JA'4fl)/ITTrA
itALL UNNIX(1i, 1,J27,IND0)

,TAL = T AL+ MM S+2 * 1' t'ArMS
lItl 4",) 7'-)'7-',725~

T3 73-'

I F('4'f).'T W lf RU) r, : Ti 4'

jf:(~~ '.'1r) GO TO n

C.ILL U .! J ( f .'5,7, JljVI JiXF
(,+ ri 77.0 1

7 5 J 1 -tj ( 4  , J\A!A
CALL "j'lX(-Jt t,.'9,jtDfXf

Tfr, 77

JL3 J~( I ,J',AM)

C LL I 'J 5 1 1 2 ,, J 17 9 1 ~

C '19 J~ IX9 t I. "I 7,-3Lj

1 I ' I -) (.I-I t

1.1 lv 1 K I

I v. A IVL VC
IF~l.~~L-.. ~r TO 7 7'

7. F)

71 1i i)f4 r , T . T: 1 7~p

ORIGINAL PAGE IS
OF~ POOR QUAL=Ix



362

1 T (6, 77
Fv 4

7 - ' AT( : P' R R *** EfN Y BLOCK INt"-X i)R ' 2P? ,

. 10 (" 'I. 2. ) t;:J Ti 1 '

1 L jL 2 X(15, 3, .E. X ,I N )
11 (1 .G. \ U, ) GO TC 7.5

• T 77

.; ii (L ;! 'I.C( I :.x,5) .G. 1 T T) f:r TrO 79
L - T I--t LC(T'I X ,

I ( U. T. ) G;. T; 0,4

I [ : -,- ) 7 , , 7..
S , ,., '. . I , 3IsXt,3)+IST T-L-NGTH

(I, p </ )-I C .+1

SI7 )= ' .' T ( : x)+IACC

7.

* r (7 , Is... ,7 "),'"

j +

7, ( ,.-I ,

. (J ; =(I . (JX) ( "j -1) + I R' /2)/TRIJ5
Hl ( ' l J..)-I '. ) S,;1.,1

A-. J")= , .(,JY )4C ',. ".-'T2(JX) )/I~ YS

.. (J ) =1 T (J ) +
. ' -( ,. 1s(, :) (I Fs C.T.-(,JX)-'))/IPx'.5

-(1 .. .,C.T , (J ) )* I(; t ' .S(JY ) /( IHPI\b*:;

.- I I T

• ( ( ) ':,l , i' 5 22?

J . = C C(/,1)-- ,.: :(1,,J ) 25 22 ,"25

I ' ( ( J")-I .', ) '., ' ',23 .

O-IGITAL PAGE
OF t Q UAK71



363

I P!= I NI)
I r ('ER-.. .I,JX)-( INP*.I CC-N ) /NTP (JX) ) 24 ,24),235

i35 TP TRI (JX )=MTP1 (JX)+INP
T' ri U5

L4 :JCA ( JX ) =NUCA ( JX ) + ( I rN! P I COIN1 1)/NTP JX)-,NR e ( I, JX)

-5. I- C C(5,1)
i3 TO 215

1.. IF(I.ARTB.Q. ) GO TO 263
h.: IT.(6,9.")

9" F t' T(t :'A AND M S FCLLCW')
I T] 6,9" 5) (NAA( IX) ,IX=1,NMfMS)

-IT_ (6,9C5) (.AS(IX),IX=1,N' CS)
9.- F[ 'IT( 24( IX, 14))

i T A , ' =

SU= .c

., IF II) !,55,455,277
27 . I (IC C (4,1)-( ICEC( ,I )/2 ,)2)45',450,271

J =J(1 ,JNAM)
C LL U; I' X(15,7,J ', 7 J IN.:)
] 'nP= I "JV
J V=

.7. J"=J I+
Ir(J<- o ' 2S)l 5,2 5,..

.I (".( . I,JX)) 275,275,29.
, ,-,F= =, f I+N C ( ,JX)

IF( T (JX)-ICu', ) ' ,11',,295

S ( I ,JX)-( I 'P I .C i)/ TP( JX)) 31 ,31 ,3L
S I C ) C /i TP( JX ) + ( I N.P JIUCA( JX ) ) /i',. ( JX)

_ . " .- (I,JX)

. -,= . il+ A ,T". L ;A

-T " 'T + AGI
T T-:=, riT ?+N E 0I

iT 7=J ( 7,J\ , )
:LL . IX( 11, L , J 7 I 11
LL 'I., X ( , 7, J27, 1i.V)

i (11 .;.1 ) lIIFF='VIe'IFF Op ~oo
L r 1 I I I FF- ) I = 1 F ir F



364

IF( '44 FI.T. ) AUUI=FLOAT(NAGI)/FLOAT(NRFE(31
IF( ,0LF) 345,345,3 5

335 IF(I " )L ) 3)5, ?,55 , 34,
34. ;LL=PU'J+3 1.*,4UU

3C TO 37
43 IF(I ,4L:11 36,936J,15,
S5. CLU=CI.JI+3. *AUU

:;C TJ 373
355 .)tL U='LU+AUU

:;G TO 165
.. CLU=CUU+AUU

3,5 J ( 8, J AM) =J ( 18, JN MI) +NAGI
L Tl 375

7 'J( :,JNA ) J (18, J 4AM+4 (NA4G1+2)/3
375 ,CC I. IUE

f '.t,1T(' ChliYLETIUi' CCUNTDOWN FOR JOB',I3,' =',16)
J ( t, J'.11 1,V ) =J ( 16, JNAl )+ 1
ACT= I CC ( 4,

,.1 F-J(?7,JNA.I
;A L U'AI(i 4,,J 27,L AD)
IF(L"c.oE,).I)L GO Troj 3,

f( 1 ,104J 4)-J(:,JNA,)-J(15 JNAM)) 38 ,4").. 40.
3o IF(J( 3,JN'M)-J 26,JNAM ) 45,,385 385

:" IF( ODF) 395,3cQ,395
% C'LL PACK( , IACT, 4 ,4)

!-" C(, , 1 =IACT
.?C T' 45
r7 L PACK( ',IACr,,,8)
IC C(4, 1 )=IACT
IF LJ A ."O.) ;rj T) 45
J( L, J , ) =

J( 7,J Ali)=J27

I~tL i KACK( ,IACT,16,L6)
I . (4, I)=i CT
1= . (5,I)
,' Ti, i'

i I F 4-C -

, :7 I ( ) 4, ,49 ,46
*tL. ." -( IFC(4, I)

tL I ( 5, 2, ICTI , OLIG 1TAT CAT W'.i < ) ,:. -,, ,. s 6, ,. ,...3 OF POO R 0 8t. .7 ,



365

a65 J27-J(27,ICEC(2,1I)
J\sAM=ICEC( 2,1)
CALL PACK( '.,J27 , 12)
J ( 2 , JNAr4) .=J27
CALL PACK( ,IACT,I,31)
ICEC(4, )= ACT
IF(I-2) 47,475 , 48

,7, 0GN:T I IU l
1)7, FC:?M;T( I PFX :!NOw CALLS LLS FOR 1/0l INTkPT. INIT. FOR J

, 14)
CALL LLS( ,JNAM)
,r; T" 456

* 75 CC 1!I UL
7!. fwM (' P-K 4IW CALLS LLS FO :',  1/l C"nTL. FOR JOti',14)

C LL LLS(V,JNVI)
,I; TOr 4A)

4 . I STC T= ISTC, T+ 1
I STAr( , IS TL i T )=J'J ,'A
STA (2, I ST NT)=ICCC(3, I )

iS TT(?, I TC T ) =ICLK
J .--J(27,J I , )

t.ALL UN:v;IX(1 ,9,J27,1I.C)
( .7 . ) C Td I 9l

IF(J(r,JNA),.IQ., ) GC TO 481
iSTAT(4, ISTCT)=J(2 ,JNAM)
.n 1 4P3

4 J1 J17=J(17,J'AV )

A L L J .I X ( 1 , 1,J17,

Ji "=J ( 1 3, JiA )
LL UN'41 X(1% , ,Jl , MN ,.I)

S TAr ( ,IS TC:T) =J ( 2,J + \ 4*M S)/MNA I
4 , T T ( 5, I -: TC T =J ( 25, JN )

: ,,T r (=,d T T, =J( '16Jr nAm
,-.:var(/, '  Cf MPDL TI,<\ 'F JB',I4,' ICEC 'iFRY TIVE'/

S L RS,: T TI,'E,ESTI"l T D ,IN EPI0DS,TAR'E
CT TI , ACTUAL*/ PRqnCESIrIG PERIDS FOLLOh'/,

J( i , J' ' -) =

J( , J 1)=

"ALL L L (3,J' 4 A )
J/7=J(.7,J'vi")

I.L l;:IX(7 6,J27 ,'PRF, )
iF ( :. ) 4. ', ,5 ' _,4

4 . L AC.( ,127, ", 3 3)
J( 7 ,J A ) =J?7

ORIGNAL 
PAGe IOPOOR QUALt



366

,i.. T; t57

:),~) FT I(' PEX wIlLL IO1W CALL LLS FOR COMPLET IUN OF JOB',
I . )

CALL LLSU3,J'9IVA
C,7 T , 4r.-

44, t.Lt,=CUl/FLrAT ( !C.U )

UI-FLC'T T(,T L) /FLflAT (ITOTAL)
.Fk-"pA.I(f, CUU,pUUr3U,SPU ARFrI4(4XF7.3))

~~A ki Lut.~,hU+ IU I

( C4I * - F5 , t i ii) I 1

. *A (e*- cFJ+SU) /1..
A"'~ (9 * ~SI 14! TFP ) '.

L;. IL A + 1-1 vN

I-'' T(' C1 . AV. ITLS AIF',4(3)YF 8.)4

fI L K - 1 9 6: ?F 5! 8 * *C
Ii 'T IF I X .*tUU)

I T PUC

i LTI. I 'Y)i F I I *4cPUJI
II + i. )=I F I. \ F 1 *RC![!

I LJT L I, '. + I - . RC IJII)

[I t C I, Y .*+ ISP U)
I K YL 1 <+ I F I X ( I . '*,*3C S I Z

ORIGINAL PAGE 1B
OF POOR QUALffM



367

SUBROUTINE NFMAL(KEYJOBNSPACE)
C NFMAL IS THE NON FEEDBACK MEMORY ALLOCATOR
C JOB IS THE NAME OF THE JOB FOR WHICH SPACE IS TO BE ALLOC
CATED
C NSPACE IS THE AMOUNT OF SPACE TO BE ALLOCATED
C IF NSPACE.NE.O THEN NSPACE IS THE AMOUNT TO BE ALLOCATED
C IF NSPACE.EQ.3 THE AMOUNT IS CONTAINED IN THE J TABLE
C IF KEY=3 THEN ALLOCATE MEMORY TO JOB
C IF KEY =1 THEN ALLOCATE MEMORY TO ALL JOBS IN
C ICEC THAT ARE WAITING FOR MEMORY

COMMON/BLK7/J(27,64)
COeMON/BLKB/ ICLK
INTEGER*2 ICLK
COMMON/BLKl2/ICECSZICCNINI1,FECSZ,IPCT,IPIIP2,I01,I
CQ2,103, IRtIS,ITA,MINBLKMMCT,MMSTMTOTALNI NIOSt
CNVODS,NPCL,NPCS, NCPUS,IFEDBKIRN1,IRN2,IRN3,IR
(.N4,IRN5,IRN6,IRN7 IRN8,IRN9, MMAPFMMSPF
C
COMMON/BLKi3/ RANAI
CCMMON/BLK16/IBWCTR(24),ICEC(5,40),ICECSICPU(10),IPAS

CS(20), IFECS,IFEC(40,4),IPROS(16),ISAVE(3,3),IVAL
(COV(1i),MALC(256,5), MALCS,MAS(24),MAVL(128,5),MAVL
CS,OMDNM(24),MTPI(24),NA(24), NAA(24) NABNAG,NA
LML(4)),NBLK(128),NFR(3),NJWMNSCHED, NREQ(4
C.,24),NTP(24),NTR(24),NUCA(24)
C
INTEGER*2 IBWCTR,ICEC,ICECS,ICPU,IPASS,IFECSIFECIPRO

CS, ISAVE,IVALOV,MALC,MALCS,MASMAVLtMAVLS,MOD
CNM,MTPL,NAtNAANAb, NAGNANLNBLKNFB,NJWMNSCHEO,
CNREQ0NTP,NTRNUCA
INTEGER*2 J,JOVFL
CIMENSION ITKOF(3,3),NTKOF(3,3),L(3)
INTEGER*2 ITKOF,NTKOF,L
CALL UNMIX(1I4,,IS,IWRTA)
WRITE(6,152) ICLKNJWP,NF8(1),IPASS(10)

152,. FOAMAT(' IN NFMAL-TIME,NJWM,NFB,&AMT. FREE ARE',4(1X,I

MODSIZ=MTOTAL/NMODS
IF(KEY) 101,1350,1010

I.l).. KX=ICECS
1512 IF(KX) 460,460,1415
1, 51 JOB=ICEC(2,KX)

J27=J(27,JOB)
CALL UNMIX(5,4,J27,INO)

1 2,. IF(ING) 105),l1 25,105



368

1025 KX=ICEC(5,KX)
1l27 FOMAT(' NFMAL NOW SCANS ICEC FOR NEXT JOB WAITING MEM

CORY')
GO TO 1012

10 50 K1=0
JJJ=MAVLS
00 1 NC=,3
L(NC)=0
CO 1 MC=1,3
ITKOF(NC,MC ) =0

1 CON'TINUE
I=i
IF(NSPACE)2,4,2

2 IVMS=NSPACE
GO TO 1

4 J22=J(22,JOB)
CALL UNMIX(7,6,J22,IND7)
IF(IN07) 8,8,6

6 CALL OVFLMG(O,JOB,7,IVALOV() ,1)
VMS=IVALOV(1)
GC TO 10

S J -17 J(17,JO )
CALL UNMIX(11,,J17,MMS)

I IF(NFB(I)) 15,15,3,
15 IF(IWRTA.EQ.O) GO TO 21

WRITE(6,2) JOB,I
21 FORMAT(' NFMAL CANNOT FILL MEMORY REQUEST FOR JOB',I4,

C ' CN PASS NO',I1)

21 IF(NFB(1)) 460,460,22
e2 IF(KEY) 460,46',1325
31. 6C 31 NC=1,3

CC 31 MC=1,3
3 NTKOF (NC,MC )=,

IF(NFB( I )-9) 40,35,35
35 KT P1=NFB ( I )

KNO=IFIX(FLOAT(KTEMP1)/2.7183+.99999)
GO TO 80

4' IF(NFB(I)-8) 50,45,45
45 KNC)=4

GO TO 8C

5.: IF(NFBt(I)-5) 6r,55,55
55 KND=3

GC TO 80
6 IF(NFB(I)-3) T.,65,65
65 KNJ=2



369

GO TO 80
7C KNO=I
80 K=1
81 FORMAT( NFMAL WILL NOW TRY TO FIND A BLOCK FOR JOB8,I

C3,' I=',13)
IBSTI=O
IBST2=0

85 IF(MAVL(JJJ,5)-MMS) 12C,2000o2000
93 IF(IBST1) 130,95,100
95 IBST1=MAVL(JJJ,5)

IBST2=JJJ
00 96 NC=1,3
00 96 MC=1,3

96 ITKOF(NC,MC)=NTKOF(NC,MC)
1y0 IF(IBSTI-MAVL(JJJ,5)) 117,117,105
105 CO 107 NC=1,3

00 1)7 MC=1,3
1-7 ITKOF(NC,MC)=NTKOF(NC,MC)

IF(K-KNO) 115,115,11C
11I L(I)=JJJ

GO TO 155
115 IBST1=MAVL(JJJ,5)

IBST2=JJJ
117 CC 118 NC=1,3

CO 118 MC=1,3
110 NTKOF(NC,MC)=.
1z JJJ=MAVL(JJJ,L)

IF(JJJ) 125,125,121
121 IF(I-2) 124,123,122
122 IF(JJJ.EQ.L(2)) GO TO 120
123 IF(JJJ.EQ.L(1)) GO TO 120
124 K=K+1

GO TO 85
125 IF(ItSTI) 130,15,130
130 L(I)=IBST2

JJJ=IBST2
GO TO 155

2;0 CONTINUE
2jvl FORMAT(' NFMAL,2 0C0,STARTLENGTHi,JOB ,1*,43XI6))
23 Z IF(I-2) 9-,30 1,20^5
2.,5 IF(MAVL(JJJ,3)-MAVL(L(1),3)) 2'10,2020,202.
2.)1j IF(MAVL(L(1),3)-MAVL(L(2),3)) 2031,2015,2015
2115 IF(MAVL(JJJ,3)-MAVL(L(2),3))2035,2340,2040
2-i- IF(MAVL(JJJ,3)-MAVL(L(2),3)) 2"45,202592025
2. 5 IF(MAVL(L(1) ,3)-MAVL(L(2),3)) 20C50,2055,2)55
2..3.; IRX=L(2)



370

IRXT=2
IMP =L( 1)
I V <T= I
GC TC 2037

2 35 IRK=L(I)
IRKT=i
IMV=L(2)
IMXT=2

2,,37 IL<=JJJ
IL <T=3
GC TO 2060

2C4L IRX=L(1)
IR (T=1
ILX=L(2)
ILAT=2
GO TO 2047

2 :4 IR. =L(2)
IRT=2
IL =L(i)
IL<T=1

2 '47 IvX=JJJ
IIF,<T=3
GC TO 206

2J5" ILK=L(1)
ILYT=I
IFM =L(2)
IFxT=2
,C TO 2057

255 ILX=L(2)
[LXT=2
IV <=L(1)
IMXT=I

2 57 IRX=JJJ
iRXT=3
;C TO 2060

. I1 IF(MAVL(JJJ, 3 )-MAVL(L( ) ,3) )3005,3010,3010
S5 IRX=L(1)

l XT=I
I .X= JJJ
[lVXT=2
(;C TO 2'.6)

3 1'. IRX=JJJ

IPX=L(1)
IPX T=1

2 .6 IP ~ F=MAVL( IRX,3)+MAVL ( IRX,5)



371

2065 IMREF=MAVL(IMX,3)+MAVL(IMX,5)
IF(IMREF/MODSIZ-(IRREF-VMS)/MODSIZ) 2075,2C00,2070

270 IMREF=((IRREF-MMS)/MODSIZ)*MODSIZ
2075 IF(MAVL(IMX,3)-IMREF+MMS) 2077,2077,117
2077 IF(IMX-IRX) 2G80,2087,2080
208C IF(IMREF-(MAVL(IMX,3)+MAVL(IMX,5))) 2385,2090,2090
2385 NTKOF(IMXT,1)=1

NTKOF(IMXT,2)=IMREF
NTKOF(IMXT,3)=MAVL(IMX,3)+MAVL(IMX,5)-IMREF
GO TO 2090

2087 IF(IMREF-IRREF+MMS) 2088,2090,2090
2088 NTKOF(IMXT,1)=l

NTKOF(IMXT,2)=IMREF
NTKOF(IMXT,3)=IRREF-MMS-IMREF

2090 IF(I-2) 2140,2140,2095
2095 ILREF=MAVL(ILX,3)+MAVL(ILX,5)

IF(ILREF/MODSIZ-(IMREF-MMS)/MODSIZI 2105,2100,2100
214" ILREF=I(IMREF-MMS)/MODSIZ)*MOSIZ
2105 IF(MAVL(ILX,3)-ILREF+MMS) 211C,211117
211, IF(ILX-IMX) 2115,2125,2115
2115 IF(ILREF-(MAVL(ILX,3)+MAVL(ILX,5))) 2120,2140,2140
2120 NTKOF(ILXT,3)=MAVL(ILX,3)+MAVL(ILX,5)-ILREF

GC TO 2135
2125 IF(ILREF-IMREF+MMS) 213,2140,2140
213 NTK0F(ILXT,3)=IMREF-VMS-ILREF
2135 NTKOF(ILXT,1)=l

NTKOF(ILXT,2)=ILREF
214C GO TO 90
155 J27=J(27,JOB)

CALL UNMIX(11,10,J27,IND)
IF(IND) 223,220,160

16 IF(-3) 162,208,208
162 MOONM(I)=(MAVL(L(I),3)+MAVL(L(1),5)-MMS-ITKOF{I,3))/MO

CDSIZ
IF(MODNM(I)) 192,192,164

164 IF(MODNM(I)*MODSIZ-MMS-MAVL(L(1),3)) 192,168,168
168 IF(I-1) 169,169,1681
1681 IF(MAVL(L(I),3)-MAVL(L(I-I),3)) 169,1682,1682
10o82 IF((MAVL(L(-1),3)+MMS)/MOOSIZ-(MODNM(I)*MODSIl-MMS)/M

CODSIZ) 1683,192,192

1683 IF((MAVL(L(I-1)t3)+MAVL(L(I-I),5))/MOUSIZ-MODNM(1)-(MM
CS/MODSIZ +1)) 169,169,1684

1684 ITKOF(I-1,1)=1
ITK9F(I-1,2)=(MODNM(I)-(MS/MODSIZ+1))*MODSIZ



372

ITKOF(I-1,3)=MAVL(L(I-1),3)+MAVL(L(1Vl),5)-ITKOF(1-1,2
C)

169 L(1413L(I)
IF(MAVL(L( I) 3)+MAVL(L( Ii,5)-MMS-ITKOF( I 3)-MODNP( I)*M

COUI)z 1729172,17C

1TKOF(1+192h=MODNM(1)*MODSIZ
ITKOF( 1+1, 3)=M4 VL( L( 1)3) +MAVL(L(I) ,5)-MMS-ITKOF( 1,3)

C -MOONM(I)*MODSIZ
c

17i 1=1+1
IF(I-3) 178,208,208

i78 eMOFJNM(I )=(MODNM(1-1)*MOOSIZ-MMS)/MODSII

13. IF(MOJONM(I )*MOUSIL-MMS-MAVL(L(1),3)) 192,1829182
18 - L(1+1)=L(1)

IF(MCDNMEI-l)*M.ODSIL-MMS-MODNM(I)*IODSIZ) 208,208919C
1PCK ITKOF(I+1,1)=l

ITK0OF( 1+1,2)=MODNM(fI)*MODSIZ
ITKL)(+1,3)=ONM(1-1)*MODSIZ-MMSMONM(I)*MOPSIZ
~CTO 2,38

192 I'=I+1
NFA I~1 )-N4FB (1)-( 1-1)

14t, JJJ=N'AVLS
,C TO 197

Im& JJJ=MAVL(JJJ,4)
1,47 1HJJJ.LE.7) GC TO 15

If 11-2) 198,1994l98
198 Ir(JJJ.EG.L(2)) GO TO 196
199 IF(JJJ.EQ.L(l)) GO TU 196

C. T 0 1
2 a 1=1

212 K X=KKX+1
If(KKX-128) 214,214,213

213 1WFITE(6#151c)
15 10 EC.'MAT( 1 NO MORE EMPTIES IN MAVL'

('C TO 46)
214. IF(NAVL(KKX,5)) 212,216,212
246 IF(M1AVL(L( I),lfl) 218,219,218
'-1l M'4~L(MAVL(L( 1), 1) 2)=KKX
21:) "AVL(KKX,1)=MAVL(L( 1) ,1)

YA /L(L(I) ,fl=KKX
W VL(KKX,2)=L()



373

MAVL(KKX,3)=ITKOF(1,2)
MAVL(KKX94)=MAVL(L(I),4)
MAVL(KKX,5)=ITKOF(1,3)
MAVL(L(I) 5)=MAVL(L(I) 5)-ITKOF(I,3)
NFB(1)=NFB(I)+L

220 IF(I.NE.1) GO TO 221
NJWM=NJWM-1
IPASS(11)=IPASS(11)-l

221 INUXB=L(I)
INDXB=L(I)
WRITE(6,1530) JOB,MMSINDXB,MAVL(INDXB,3),MAVL(INDX85

C),I
150. FORMAT(' NFMAL TO MASGN',6(3XI5))
44u CALL MASGN(1lJOB,INDXBMMS)
445 'IF(L(3)) 450,455,450
450 I=I+1

IF(I-3) 210,210,455
455 J27=J(27,JOB)

CALL PACK(3,J27,0,16)
J(27,JOB)=J27
IF(KEY) 1025,46G,1025

46'% WRITE(6,155c) ICLKNJWM,NFB(1),IPASS(11)
155j FORMAT(' OUT NFMAL-TIMENJWINFB &AMT. FREE ARE',4(1X,

C14))
IF(IWRTA.EQ.O) GO TO 495
WRITE(6,465)

465 FORMAT(' MAVL FOLLOWS',/)
466 FORMAT(6(3X,15))
467 FORMAT(' MALC FOLLOWS',/)

KKK=MAVLS
47. IF(KKK) 483,480,475
475 iRITE(6,466) KKK,(MAVL(KKK,JX),JX=1,5)

KKK=MAVL(KKK,1)
GO TO 470

480 WRITE(6,467)
KKK=MALCS

485 IF(KKK) 495,495,490
490 RITE(6,466) KKK,(MALC(KKKJX),JX=1,5)

KKK=MALC(KKK,1)
GC TO 485

495 RETURN
END



374

SURROUTINE MAPREF
COIVMONfBLK7/J( 27,64)
COI MON/BLK8/ ICLK
INTEGER*2 ICLK
CCVMON/BLK12/ICECSZICONIN1,IFECSZIPCT,1P1,IP2,IQ1,I

C02, 103, IR, IS, ITA,MINBLK,MMCTMMST,MTOTALNI ,NIOS,
CNML"!OS,NPCLtNPCS, NCPUS,IFEOBK9IRN1,IRN2,IRN3vIR
CN4, IRN5tIRN6,IRN7,IRN89IRN9, MMAPFMMSPF

CC-''OO/BLK13/RPO,RP2RP3RP4RP5,RP6,RP07,RPO8,R
RP1.2,RP11

COVM1ON/BLK16/IIWCTR(24)ICEC(5,4O),ICFCS,ICPU(10),1PAS
C-S~cl)9IFECS,IFLC(40,4),IPROS(16) ,ISAVE(3,3), IVAL

COV( 11'f,MALCt256,5), MALCS*MAS(24),MAVL(128,5),MAVL
CSvMODNM(24) ,MTP1(24) ,NA(24), NAA{24) ,NAB,NAG,NA
C-ML(4C),NBLK(128),NFB(3) ,NJWIM,NSCHED, NREQ(4
t '.,4) ,NTP( 24) ,N"TR( 24) ,NUCA( 24)
C
INrEGL-R*2 IBWCTR,ICECICECSICPUIPASSIFECSIlFEC, IPRO

CS, ISAVE, IVALOV,MALC,MALCS,MAS,MAVLMAVLSMOD
CNM,MTPlt NA,NAANAB, NAG,NAMLPNBLK,NFB,NJWMtNSCHEO,
C R QPNTP ,NT R ,N UCA
INTiGER*2 JJOVFL
OUIvENSION L(3)

C TO SEf UP ISAVE LIST OF JCBS IN ORDER OF PREFERENCE
C JOBiS TO BE ORCERED PASSED IN ARRAY NAML(K)
C PR-.JGR-44 FINDS JOBS TO ALLOCATE

0IMEiNSION ITKOF(3,3) ,NTKOF(3,3) ,KPTMR(3,2)
INTEGER*2 MODSL1, IRREF, IMREF, ILREF, IRX, IRXT, IMX, IMXTII

CLX, ILXT, ITKOF,NTKUFtKPTMR,MflDSTvMODED,L

CALL UNMIX(1,cj, IS,IWRTA)
WRITE(6,158.) lCLK,NJWM,NFB(1) ,IPASS(1')

153W. FCP'AT(f IN MAPREF-TIME,NJWM,NFB,&AMT.FREE ARE'1,4(lX,I
U4)
MC SI L=MTOTAL/NMODS

PC 1) KX=1,ICECSZ
NA'AL ( KX ) =0

JNVA1=ICEC(C2,KX)
IF(JNAM) 3,10,0

3 J27=J(279JNAM)
CALL UNMIX(5,4,J27,IND)
I F ( I N) 5, IC v5



375

5 IX=IX+l
NAML(IX)=JNAM

l CCNTINUE
NJWM=IX
NJPW=IX
IF(NJPW) 12,12,15

12 WRITE(6,13)
13 FORMAT(' NO JOBS WAITING MEMORY AT THIS CALL TO MAPREF

C')
RETURN

15 O0 20 KX=1,128
NBLK(KX)=O

2C CONTINUE
KX=MAVLS
IF(KX) 25,25,35

25 WRITE(6,3)
3" FORMAT(' NO AVAILABLE BLOCKS IN MAVL)

RETURN
35 IX=O
41 IX=.IX+
55 NBLK(IX)=KX

KX=MAVL(KX,I
IF(KX) 60,6O,40

60 NFB(1)=IX
NBPF=IX

65 00 7, KX=1,3
DC 68 IX=1,2
ISAVE(KX,IX)=O
ITKOF(KX,IX)=O
KPTMR(KXtIX)=

68 CONTINUE
ISAVE(KX,3)=0
ITKOF(KX,3)=O

71 CONTINUE
K=l

8.' K=K+1
IF(K-NJPW) 85,85,180

85 IF(NAML(K)) 80,80,90
90 I=L
75 I=1+1

J17=J(17,NAML(K))
CALL UNMIX(11,O,J17,MMS)

95 CC 97 KX=1,3
uO 97 IX=1,3

97 NTKOF(KX,IX)=lD



376

98 M= ,+ 1
IF(M-NBPF) 105v1)51C'C

1 r. IF(I-1) 809809180

CSEt- IF JOB WILL FIT INTO PRESENT BLOCK IN NOLKIM)
iii( KT--MP1=MAVL(NBLK(M),5)

IF(KTEMP1.LE.') GO TO 98
DS =FLOAT( P'MSU FLOAT( KTEMP1.)
IF(DSM-1.) 2COO#2iJ)G,98

2 3C JJJ=NBLK(M)
Li 1i=ISAVE(1,2)
L(2 )=ISAVE(2#2)
Li 3)=ISAVE(3,2)

2.'-w 1ORMATI' MAPREF 2)Ci1'v5(4X,14))
21 J IF(I-2) 115,3001,2G05
2-"'.5 IF(t-'AVL(JJJ,3)-M~AVL(L(l) ,3)) 20)109202'j202,-
2,.llj IF(MAVL(LI 1) 3)-MLWLIL(2) ,3) ) 2030,2015,20 15
2A 5 IF(MAVL(JJJ,3)-M'AVL(L(2),3) )20335,2040,204)
2:'ev IF(mAVL(JJJ,3)-MAVL( Li2) ,3)) 2045,2025,2025
2.;.25 IF(TMAVL(L( 1) ,3)-MAVL(L(2) ,3)) 2350,2055,2355
2 1') 3 IRX=L(2)

IMX=L( 1)

GO TO 2037
27315 IRX=L(l)

IRXT=l
I Mv =L (2)
IXT=2

2'-31 IL)(=JJJ
ILXT=3
GO TO 236G)

2,4 hIp=L(l)

ILX=L(2)
ILiXT=2
GC TO 2347

2.45 IRX=L(2)
I RXT=2
ILXL (1)
I LXT=1.

2>4 1VWX =J J J
IMXT=3
GO T3 2 ' 6'

ILXT=l



377

IMX=L(2)
JMXT=2
GO TO 2057

2C55 ILX=L(2)
ILXT=2
[MX=L( 1)
It4XT=1

2C57 LRX=Jjj
IRXT=3
GO TO 2060

3Q;uA [F(MAVL(JJJ,3)-MAVL(L(1),3) )3005,301O,301)
3Uko5 IRX=L(1.)

IRXT1l
IMX=JJJ
[MXT=2
GO TO 2060

3C 1., IRX=Jjj
IRXT=2
IMX=L(l)
IPXT=l
G L To 21) 63

2C26.. IRREF=MAVL( IRX*3)+MAVL( IRX,5)
2 'b5 ItMREF=MAVL (IMXP3)+MAVL(IMX,5)

IFE IMREF/MODS[Z-( IRREF-M~MS)/MODSIL) 2075,2C70,207C
2oY~i I?REF=((IRREF-MMS)/MODSIZ)*MOOSIZ
2'.75 IF(MAVL(IMXt3)VIMREF+10MS) 2077,2077,95
Z-v77 IF(IMX-IRX) 2%;80,2AS79,80
2 8J IF(IMREF-(MAVL(IMX,3)+MAVL(IMX,5))) 2085#2090#2090
2t.85 NTKOF(IMXT,1)=,

NTKOF( IMXT,2)='IMREF
NTKOF(IMXT,3)=!4AVL(IMX,3)+MAVL(1MX,5)-IMREF
GC TO 2090

2-j87 IF(IMREF-[RREF+MMS) 2-j88r209G,2(')
2§-'88 NTKOF(IMXT,1)=l

NTKOF( IMXT,2)=IMREF
NTKOF( IMXT93)=IRREF-?MMS-IMREF

2,'9C0 IF(I-2) 21409,2140,2095
2V,95 ILRc-F=MAVL( ILX,3)+MAVL( ILX,5)

IF(ILREF/MODSIZ-(IMREF-IdMS)/MOOSIZ) 210592100,21'()
21v'C. ILRFF=((IMREF-MMS)/MOOSIL)*MOOSIZ
21-5 IF(MAVL( IL',3)-ILREF.MMS) 2110,21109,95
211, IF(ILX-IMX) 21.15,212592115
21i5 IF(ILREF-(MAVL( ILX,3)+PAVL( ILX,5) )) 2120,214092140
2121. iiTKOF(ILXT,3)=MAVL( ILX,3)+MAVL( [LX,5)-ILREF

GO TO 2135
2125 IF(ILREF-IMREF+MMS) 213,-12140,2141



378

2 13,. NTIKrJF( ILXT,3)=I MREF-MMS-ILREF
2135 NT<WF(ILXT,1)=l

NTKOF( ILXT,2)=ILREF
214:" CCNTINUE

GC TO 115
C JJb WILL FIT INTO MEMORY BLOCK
115 MO1 ST=(MAVL(NBLK(M) ,3)+MAVL(NBLK(M),5)-MMS-NTKOF(I,3))

C / MCIODS I Z + 1
MOJED=CMAVL(NBLK(M),3)+MAVL(NBLKIM),5)-NTKOF(1,3)-l)IM

Cur G p S 1
Jli=J( 11,,NAML(K))
CALL UNMIX(1 lCC,JIIMNAR)

IF(MODED-MODST-1) 13C,125, 120
12- ISF=,'ODST+l

Hi E=MUDF.D-
C -j 122 LX=IST,IEO

12i tOL,:MUD+4AA (LX)
12.-. IL'"S=MAVL (NBLK CM),3) +MAVL (NBLK (M) ,5)-( MODED-1 )*MODS[L

mI)L ' =MUD+ (NAA (MOCED )*ILWS )/MAS( MOOED)
13 IF(M.AVL e-It3LK(M) ,3)4MAVL(NBLK(M),5)-MOD)ST*MODSIZ)

C 131,131,132

131 I F"~S=MAVL ( NLK CM), 5)
GOI TO 133

13% IFA S=MODST*MODSIZ-MAVL(NBLK(A) ,3)
133 MUL=MUD4INAA( MODSr')*IFtPS)/MAS( MOOST)

13 TE'AP=FLOATPMMSPF )*DSm
~U' '=FLOAT( WUD) /FLnAT (MNAR)

14.. TEflP2=FLOAT(MPF)*DUM

145 TFmP2=FLOAT(MMAPF'j/DUM

i.. ITLNfvP=IFIX (TEMP+TEMP2+.5)

162 JI =J(13,NAML(K))
CALL UNMIX( 15,7,J1',KTEMP1)
Jl':=J(lGISAVE(I,1))
CALL UNMIX(C15,7,J1ClKTEPP2)
IF( ITEMP+IFIXC (KTEMPl-KTEMP2)*RP'2)-ISAVE( 1,3)) 95,95,

165 KPTPR(I,1)=K
ISAVE (1,1) =AAML(K)

169 KPrklR(I,2)=M
lSAVE (1,2) =NBLK(M)
I S 'AI , 3)1IT E HP



379

DO 172 KX=1,3
17' ITKOF(KX,1)=NTKOFKX,1)

ITKOF(KXt2)=NTKOF(KX,2)
ITKOF(KX,3)=NTKOF(KXt3)

172 CONTINUE
GO TO 95

18k IF(ISAVE(I,2)) 185,210,185
185 J17=J(17,ISAVE(1,1l )

CALL UNMIX(11,O0,J7,MMS)
J27=J(27,ISAVE(tl))
CALL UNMIX(lltlC,J27,IND)
IF[IND) 243,190,240

19C IF(MAVL(ISAVE(I,2),5)-MMS) 195,195,200
195 IF(KPTMR(I,2)-NBPF) 196,197,197
196 NBLK(KPTMR(1,2))=NBLK(NBPF)
197 NBLK(NBPF)=J

NBPF=NBPF-1
2:3 IF(KPTMR(I,1)-NJPW) 201,202,202
2,-1 NAML(KPTMR(I,1))=NAML(NJPW)
2u2 NAPL(NJPW)=3

NJPW=NJPW-1
JINOX=ISAVE(1,1)
MINDX=ISAVE(1,2)
IF(IWRTA.EQ.O) GO TO 217
WRITE(6,205) JINDX,MMS,MINOX,MAVL(MINDX,3),MAVL(MINDX,

C5)
275 FORMAT(' MAPREF 2i5 CALLS MASGN',5(4X,14))
237 CALL MASGN(1,JINDX,MINDX,MMS)

J(23,JINDX)=ISAVE(1,3)
NJWM=NJWM-1
GC TO 65

15C, FORMAT(' TIME=,I6,' MAPREF FINDS NO BLK FOR JOB',I4,'
C PASS=',3)

21A IF(ISAVE(1,1)) 40,,430,211
211 IF(I-1) 40G,400,212
212 WRITE(6,15M0) ICLK,NAML(K),I
215 IF(KPTMR(I,1)-NJPW) 216,217,217
216 NAML(KPTMR(1,1))=NAML(NJPW)
217 NAML(NJPW)=C

NJPW=NJPW-1
00 222 KX=1,3
IF(KPTMR(.KX,2))218,22C,218

2,1b NbLK(KPTMR(KX,2))=ISAVE(KX,2)
22. CONTINUE

GO TO 65
24Z L(I)=ISAVE(I,2)



380

MOL'NM(I)=(MAVL(LI)3)+MAVL(L()5)MMS.ITKOF(I
3))Ml

(CS I z
IF(1-2) 26C092429300

242 L( 1)=ISAVE(1,2)
245 IF(MAVL(L(2) ,3)-MAVL(L(1),3) )26'),?50,'250
25' IF((MAVL(L( 1) ,3)+MMS)/MODSIZ-(MODNM( I)*MODSIZ-MMS)/M~O

CSI/) 251.,255t255
C

251 IF(M~AVL(L( I),3)-MODNM(1)*MODSIZ+MMS) 252t252,255
252 IF((MAVL(L(1),3fl-MAVL(L(1) ,5) )/MODSIZ-(MODNM( I)*NMOCSIZ

L-P'vS)/MOD SIZ) 260,253,253

253 IF(MAVL(L( 1)v3)+MAVL(L(1)q5) -((MOONM(I)*MODSIZ-MMS)/M
COGSIZ) *MODSIL) 265,265,254

ITKOF(12)=((MO['NM()*MODSIZ-MS)/MODSIZ)*MODSIL
I TIIfF(1,3) =MAVL (L(1) ,3 )+MAVL( L( 1)95 )-ITKOF( 192)
Gc rO 265

255 LC 258 KX=193
IFIISAVrE(KX,2)) 256,258,256

256 I46U\(KPTMR(KXq2) )= .'
2 5 6 CONTINUJE

K=KDTMR(1, 1)
3;C TO 75

26k. IFI IAVL(L(l),3)-MODNM(I)*MODSIZ+MMS) 265,265,255
265 IF(vOIDNM(1 )*MOL)S1L-MwAVL(L I ),3)-MAVL(L(I),5)+MMS+ITKlF

ITK;)FCI+1,2)=MOLCNMcI)*MODSIZ
I T i JF (1+4I., 3)= fA VL ( L (1) ,3)+tAAVL (L (I),5)I-MMS-ITKOF (1,3)-

27. ISA'/E( 1+1, 1)=ISAVE( 1,1)

I S VE: (1+2,3) =l SAVE( 1,3)

KP;R1+1, 2) =KPTMR( 1,2)

IF (I - 3) 2 75, 3:;3v
275 to) -( ) ( O N ( - ) M O I - 4 ) M D I

IF(!, L(IAV(1,),3-,00iNM()*ODSZ+MS)285,285,255
285 1 ! I C ,IZ+MP 2 90,2 95, 29 5

I TK - I + 112) =,u( 1 *O



381

ITKOF(I+1,3)=MODNM(I-1)*MODSIZ-MMS-MODNM(i)*MODSIZ
295 ISAVE(I+1,1)=ISAVE(I,)

ISAVE(I+1,2)=ISAVEfI,2)
ISAVEI1+1,3)=ISAVE(1,3)
KPTMR(I+1l9)=KPTMR(I,I)
KPTMR(I+1,2)=KPTMR(I,2)

3&2 00 310 KX=1,3
IF(KPTMR(KX,2)) 305,310,305

305 NBLK(KPTMR(KX,21)=ISAVE(KX2)
310 CONTINUE

I=3
32C 1=I+1

IF(I-3) 325,325,322
322 IF(KPTMR(1,1)-NJPW) 323,324,324
323 NAML(KPTMR(1,l))=NAML(NJPW)
324 NAML(NJPW|=0

NJPW=NJPW-1
GC TO 65

325 KKX=2
IF(ITKOF(I,1)) 330,370,330

330 KKX=KKX+1
IF(KKX-128) 334,334,332

332 WRITE(6,333)
333 FORMAT(' NO MORE EMPTIES IN MAVL')

RETURN
334 IF(MAVL(KKX,5)) 33n,335,333
335 MAVL(KKX,1)=MAVL(ISAVE(1,2),1)

IF(MAVL(KKX,1)) 345,345,340
34- MAVL(MAVL(KKX,1),2)=KKX
345 MAVL(ISAVE(I,21,1)=KKX

MAVL(KKX,2)=ISAVE(I,2)
MAVL(KKX,3)=ITKOF(I,2)
PAVL(KKX,4)=MAVL(ISAVE(I,2),4)
MAVL(KKX,5)=ITKOF(1,3)
MAVL(ISAVE(I,2),5)=MAVL(ISAVE(I,2),5)-ITKOF(I,3)
NFB(1)=NFB(1)+1

35% IX=NBPF+1
IFfIX-128) 360,369,355

355 WRITE(6,357)
357 FORMAT(' NO MORE EMPTIES IN NBLK')

RETURN
363 NBLK(IX)=KKX

NBPF=NBPF+1
37c IF(MAVL(ISAVE(I,2),5)-MMS) 375,375,380
375 IF(KPTMR(I,2)-NBPF) 376,378,378
376 N8LK(KPTMR(I,2))=N8LK(NBPF)



382

DC 377 KKK=193
377 If (N8PF.EQ.KPTMR(KKK,2) ) KPTMR(KKK,2)=KPTMR( 1,2)
378 iNhLK(NBPF)=0

NI3PFf'4BPF-1
382 I(-1) 39)93859390)
385 J( 23, [S4VE(lv, U)=ISAVE( 1,3)

NJWM=NJWM-1
319u JIND)X=ISAVE(,t')

MlNDX=ISAV7( I ,,2)
IF(IWRTA.EQ.O) GO TO 397-
WRITE(6t395) JINDXMI'S,MINDXMAVL(MINUX,3) ,MAVL(MINOX,

C5 ) ,
395 Ff'RMAT(I MAPREF 395 CALLS MASGNI,6(3X,14))
397 CALL MASGN(1,JINDX,MINOXMMS)

GO TO 32:7
4 1-- WITE(694 15) ICLK,NJWMNF3(I) ,PASS(lC)

4u,5 FCOMAT(l OUT tAAPREF-TIME9,NJWM,NFB &AMT. FREE ARE',4(lX
G, 14))
IF('IWkTA.C-Q.0,) GO TO 432

41.. F(><'AT(' MAVL FOLLOWS',//)
415 Vf',MAT(6(3X,15))

K K.K=MA VL S
416 IF(KKK) 422p422,420
4'C.. WP<ITF(6,415) KKK, (MAVL(KKKJX) ,JX=1,5)

KKK=MAVL(CKKK, 1)
60 TO 418

422 WPITE(6,425)
425 FO> VAT(l MALC FeLLOWS',//)

KKK=MALCS
44' 7 If (KKK) 432,432943'
431. %N1TE(b,415) KKK,(MALC(KKKJX) ,JX=1,5)

KKK=MALC(IKKK, 1)
G00 TO 427

432 R' URJN
E 4U



383

SUBROUTINE MASGN(KEYINOXJINOXBISPACE)
C MASGN ASSIGNS MEMORY TO JOBS AFTER MEMORY PREFERENCE FACT
CORS HAVE
C BEEN CALCULATED
C IF KEY=I THEN ASSIGN THE AMOUNT ISPACE TO JOB INDXJ FROM
CBLOCK
C INDXB
C IF KEY = THEN ASSIGN ALL JOBS IN ISAVE MEMORY FROM ASSOC
CIATED
C BLOCKS

COMMON/BLK7/J(27,64)
COMMON/BLK8/ ICLK
INTEGER*2 ICLK
CCMMON/BLKl2/ICECSZ,ICONINh1IFECSZIPCT,IPIlP2IQ1,I
CQ2,1Q3, IRISITAMINBLKMMCTMMST,MTOTALNItNIOS,
CNMODS,NPCL,NPCSt NCPUSIFEDBKIRN1,IRN2,IRN3,IR
CN49IRN5SIRN6,IRN7IRN8,IRN9, MMAPFMMSPF

COMMON/BLKL3/ RANAI
CC MON/BLKL6/IBWCTR(24),ICEC(5,40),ICECS,ICPU(10),IPAS

CS(20~) IFECS,IFEC(40,4),IPROS(16),ISAVE(3,3),IVAL
CCV(10)tMALC(256,5), MALCSMAS(24),MAVL(128,5),MAVL
CS,MODNM(24),MTP1(24),NA(24), NAA(24),NAB,NAG,NA
CML(43),NBLK(128),NFB(3),NJWMNSCHED, NREQ(4
CO,24),NTPT24)tNTR(24),NUCA(24)

INTEGER*2 IBWCTR,ICECICECS,ICPU,IPASS,IFECS,IFEC,IPRO
CS, ISAVEIVALOVMALCMALCS,MASMAVLtMAVLS,MOD
CNM,MTPltNA,NAAtNAB, NAGtNAML,NBLK,NFB,NJWMNSCHEO,
CNREONTPNTRtNUCA
INTEGER*2 J,JOVFL
CALL UNMIX(O1,0IS,IWRTA)
MOCSIL=MTOTAL/NMODS
IF(KEY-1) 5,2,5

2 JOB=INDXJ
IBLKN=INDXB
YMS=ISPACE
KEMPT=1
GO TO 40

5 I=1
KEMPT=1

1L IFIISAVE(I,1)) 25,15,25
15 WRITE16,20)
2' FORMAT(31H ALL ASSIGNMENTS HAVE BEEN MADE)

GO TO 300



384

25 JOB=ISAVE(I,l)
IBLKN=ISAVE( 1,2)
J22=J(22,JOB)
CALL UNMIX(7,6,J22, IND7)
IF(IND7) 30,35,3)

3, IVALOV(1)=0
CALL OVFLMG(1,JOB,7,1VALOV,1)
MMS=LVALOV( 1)
GO TO 40

35 J17=J(17,JOB)
CALL UNMIX(11,O,J17,MMS)

4-) IF(KEMPT-255) 55,55,45
45 wRITI(6,5C)
b FORMAT(29H NO MORE EMPTY BLOCKS IN MALC)

GO TO 300
55 IF(ALC(KEMPT,5)) 60,65,60
6' KEMPT=KEMPT+1

GO TO 40
65 KOCC1=Q

KOC(, = MA LC S
7- IF(KOCC) 75,75,1J3
C TO HERF IF NEW BLOCK GOES AT END OF MALC CHAIN
75 IF(KOCC1) 85,85,80
C TO H4ERE IF MALC CHAIN WAS NOT EMPTY

MAL(IKOCC1,1)=KEMPT
MALC(KEMPT,2)=KOCC1
GC TO 9:

C TO HERL IF MALC CHAIN WAS EMPTY
85 MALCS=KEMPT

MALL (KEMPT,2)=-
9. MALC(KEMPTi)=-1

GO TU 135
1:2 (F(:ALC(KOCC,3)-'IAVL(IBLKN,3)) 105,105,110
1 5 KCCCL=KOCC

KOC(=MALC(KOCC,1)
GO TO 7G

!1 IF(KOCCI) 12C,115,121
C ALLOCATEC BLOCK WITH INDEX KOCC IS PRESENTLY AT HEAD CF M
CALC CHAIj
115 MALC(KEMPT,2)=-1

9ALCS=KEMPT
(;C TO 125

C NE& PLCK GOES BETWEEN BLCCKS WITH INDEXES KOCC1 AND KOCC
12- MALC (KEMPT,2)=KCCC

,AL,(KOCC1 , I )=KEMPT
i25 MALCl(KEMPT,I)=KUCC



385

MALC(KOCC,2)=KEMPT
135 IF(MAVL(IBLKN,5)-MMS) 140,140,210
C TO HFRE IF ALL OF BLOCK WITH INDEX IBLKN IS TO BE ALLOCAT
CEb
140 IF(MAVL(IBLKN,2)) 145,145t153
145 MAVLS=MAVL(IBLKN,1)

GO TO 155
153 MAVL(MAVL(IBLKN,2),1)=MAVL(IBLKN,1I
155 IF(MAVL(IBLKN,1)+1) 1609165,160
160 MAVL(MAVL(IBLKNl),2)=MAVL(IBLKN,2)
165 MALC(KEMPT,3)=MAVL(IBLKN,3)

MALC(KEMPT,4)=MAVL(IBLKN,1)
MALC(KEMPT,5)=MAVL(IBLKN5)
IPASS(10)=IPASS(10)-MAVL(IBLKN,5)
KO=KOCCI

17. IF(KO) 200,200,175
175 IF(MALC(KO,4)-IBLKN) 2C0,180,200
18 MALC(KO,4)=MAVL(IBLKN,l)

KO=MALC(KO,2)
GO TO 170

203 NFB(I)=NFB(1)-1
00 235 IX=1,5
MAVL(IBLKN,IX)=O

275 CONTINUE
GO TO 310

210 MALC(KEMPT,3)=MAVL(IBLKN,3)+MAVL(IBLKN,5)-MMS
MAVL(IBLKN,5)=MAVL(IBLKN,5)-MMS
MALC(KEMPT,4)=MAVL(IBLKN,1)
MALC(KEMPT,5)=MMS
OAVL(IBLKN,4)=KEMPT
NAB=NAB+1
IPASS(10)=IPASS(10)-MMS
GO TO 310

215 IVALOV(1)=KEMPT
Jl=J(l1JOB)
CALL UNMIX(15,7,Jl,[BK)
IF(IBK) 225t220,225

225 CALL PACK(7,JLKEMPT,255)
J(1,JOB)=Jl
GO TO 270

225 J1Y=J(19,JOB)
CALL UNMIX(8,0,J19,IBK)
IF(IRK) 235,230,235

23. CALL PACK(3,J19,KEMPT,255)
J(19,JOB)=J19
"0 TO 270



386

235 J17=J(17,JOb)
CALL UNMIX( 15, 11,Jl7,IbKU)
CALL UNMIX( 12989J19, BKL)
IBK= IBKL
CALL PACK(49 IBK, IBKUP15)
IF(113K) 245,240,t245

24C CALL PACK(7,J179KEMPT9240)
J( I79JOB)=Jl7
CALL PACK(89J199KEMPT915)
J( 149J01)=J19
iC TO 270

245 J22=J(22,JOB)
CALL UNMIXC8?7,J22, IND8)
IF(1ND8) 260925"9260

25C' CALL PACK(OJ229128,128)
J( 22,JOB)=J22

26 CALL OVFLMG(29J08,8,IVALOVq1)
27.:) J27=J(279JOB)

CALL PACK()vJ27,03,16)
J (27, JOB) =J27
IF(IwRTA.EQ.0 ) GO TO 280
wRIT (6,157) ) ICLK,JOB,KEMPTMALC(KEMPT,3) ,MALC'(KEMPT,

15 *'. F0C;0AT(I MASGNTIMEJ08,MALCBLK,STLG,',5(2X,15))
28 IF(KEY) 28592859300)
285 1=1+1

G.; TO 1).
3,.. RETURN
31-, MOLUST=( MALC( KEMPT,3)+MALCCKEMPT,5)-MMS )/MOOSIZ4-1

MflD)ED=( MALC( KFMPT,3) 4MALC (KEMPI ,5)-l) /MOOSIZ41
JII=J(11vJOB)
CA LL tNMIX(l 1,Jll1,MNAR)
IF(MODEO-MOOST-.) 330,325 ,315

315 IST=NIST+1
fI Fj=MCDED-1
K K X =IST
CCO 32C KKX=IST91ED
NA (KKX) =NA (KKX) +1
tA(KKX)=MAS(KKX)-MODSIZ
IBW4CTR( KKX )=l

321- CONTINUE,
325 MDAlT=M4ALC(KEMPT,3) +MALC(KEMPT,5)-(MODED-1J*MODSIL

NA (MOCED) =NA (MOCED)+1
NIAS ( MVDD) =MAS( MOOED) -OAiMT
,4AM(Mc'oED)=MAXOc.;,NAA(MODEO)-(MEDAMT*MNAR)/MMS)
I P CTR( MOOED) =1



387

330, IF(MALC(KEMPT,3),MALC(KEMPT,5)-MODST*MOOSIZ) 3400335,3
C35

335 MSTAMT=MODST*MOOS[Z-MALC(KEMPT,3)
GO TO. 345

34(C MSTAMT=MALC(KEMPT95)
345 NA(MODST)=NA(MODST)+l

MAS(MOD)ST) =MAS(MODST)-MSTAMT
NAA(MODST)=MAXOCONAA(MOOST)-(MSTAMT*MNAR)PMS)
JBWCTR( MOOST )=l
GO TO 215
*END



388

SUBROUTINE MEMRLS(JOBiJBLK)
C MEMRLS RELEASES THE BLOCK NO IJBLKI FROM JOB IJOIBI.

COMMON/BLK7/J(27t64)
COMMON/BLK12/ICECSZvICCNvlNltlFECSZvIPCTPIPIPIP2tlQltI

C0291039 IRviStITAvMINBLKgMMCTIMMSTMTOTALtNItNIOSP
CNMOOSiPNPCLvNPCS9 NCPUS91FEDBK91RN19IRN2*IRN3*IR
CN4#IRN59IRN6,IRN7,IRN8,IRN9, MMAPFtMMSPF
c
COMMON/BLK13/ RANAI
COMMON/BLK16/TBWCTR(24)91CEC(5940),ICECSICPU(10)91PAS

CS(2c)l IFECSilFEC(4094),IPROS(16),ISAVE(393),IVAL
COV(1-))qMALC(256v5)q MALCSvMAS(24)vMAVL(128v5)vMAVL
CSMODNM(24)tMTP1(24)tNA(24)t NAA(24),NABtNAGtNA
CML(43)tNBLK(128),NFB(3)tNJWMtNSCHED9 NREQ(4
i-0,24),NTP(24),NTR(24)PNUCA(24)

INTF%JER*2 IBWCTRvICEC*ICECStICPUtIPASSPIFECSPIFEC91PRO
csv ISAVEtIVALOVMALCtMALCStMAS*MAVL#MAVLStMOD
CNMvVTPItNANAAPNAB, NAGjNAMLjNBLKjNFBqNJWMNSCHE0v
C.NREQNTPgNTRNUCA
INTEGER*2 JvJOVFL
CALL UNMIX(1,'91STWRTA)
HODSIZ=MTOTAL/NMODS
MOOST=MALC(JBLK,3)/MODSIZ+l
MODED=(MALC(JBLK93)+MALC(JBLKt5)-l)/MODSIZ+I
Jll=J(11,JOB)
CALL UNMIX(109),JllMNAR)
MMS=MALC(JBLK,5)
IF(MODED-MODST-1) 694t2

2 IST=MODST+l
IEO=MODED-1
DO 3 KKX=ISTIED
NA(KKX)=NA(KKX)-l
NA5(KKX)=MODSIZ
NAA(KKX)=ICON/MMCT
IHWCTR(KKX)=l

3 CONTINUE
Z4 NAWO0ED)=NA(MOOED)-l

MEUAMT=MALC(JBLKt3)+MALC(JBLKt5)-(MODED-1)*MODSIZ
MAS(M0DED)=MAS(MODF0)+MEDAMT
NAA(MODED)=MINO(ICON/MMCTNAA(MODED)+(MNAR*MEDAMT)/MMS

IBWCTR(MODED)=l
6 KTEMP=MALC(JBLK,5)

MSTAMT=MINOtKTEMPMOOST*MODSIZ-MALC(JBLK#3))



389

MASt MODST )=MASf MOOST )JMSTAMT
NA(MODST)=NA(MODST)+l
NAA(MODST)=MINO(ICON/t4MCTNAA(MODST)+(MNARk*MSTAMT)/MMdS

C)
IBWCTR( MODST)=l
m1=O
M=MAVLS

14 IF(M) 15915970
15 IF(MAVLS) 20920990

2, MAVLf 1,2)=-1
MAVLt 1,)=MAlC(BK
MAVL( 1,4)=MALC(JBLKt3)
MAVL( 1,4)=MALC(JBLK,5)
MAVLS=19=ML(Bq5
f'AENT=l
NE2=lC(8K2

2I12) 27,JLK27,2
25 ILF(12) 9292

25 MALC( 12)
12=MTO l23 2
GO TOMA 23L,2

27 12) 32(BL,323
32. MALCSMAL32#32K33

GO TO 35
33 MALC( 12, 1)=MALC(J8LK,1)

35 12=MALC(JBLK91)
1Ff 12) 44944940

4C- MALCt 12#2)=MALC(JBLKt2)
44 NFIBf1)=NFB(1)+l
45 NAB3=NAB-1

IPASS(1O)=IPASS(V'i)+MALC(JBLK,5)
[F(IWRTA.EQ.') GO TO 48
WRIrE(6,47) JOBJFBLKMALC(JBLK,3) ,MALC(JBLK,5),NENTMA

CVL(NFNr,3)t MAVL(NENT,5)

47 FORMAT(' MEMRLS--JOB,A-LCBLK,STRT,LG.,AVLBLKSTqT,9LG.19
Cit IX, 14))

48 00 5), 1=1,5
MALC(JBLK, I)=3D

5- CCNTINUE
GC TO 50V3

7-. IF(MAVL(M,3)-MALC(JBLK,3)) 75975,8n~
75 MI=m

M=MAVL (M, 1)
'JC TO 10



390

80 IF(MALC(JBLKt3)+MALC(JBLKt5)-MAVLIM,3))90,85,90
85 ICASE=1

NENT=M
GO TO 95

90 ICASE=O
95 IF(M.LE.0) GO TO 100

IF(MAVL(M,2)) 220,220,100
ICO IF(M1.LE.0) GO TO 110

IF(MAVL(Ml,3)+MAVL(M1,5)-MALC(JBLK,3)) 110,105,110
105 ICASE=ICASE+2

NENT=M1
110 IF(ICASE-3) 170,115,170
115 MAVL(M1,1)=MAVL(M,1)

MAVL(M1,5)=MAVL(M1,5)+MALC(JBLK,5)+MAVL(M,5)
MAVL(Ml,4)=MALC(JBLK,I)
IF(MAVL(M,1).GT.O) MAVL(MAVL(M,1),2)=M1
DO 120 JX=1,5

123 MAVL(MJX)=O
135 NFB(1)=NFB(1)-1

GO TO 1751
17C IF(ICASE-2)220,175,220
175 MAVL(IMI4)=MALC(JBLK,1)

MAVL(Ml,5)=MAVLMI,5)+MALC(JBLK,5)
1751 IF(MALC(JBLK,2)) 176,176,177
176 MALCS=MALC(JBLK,1)

GC TU 178
177 MALC(MALC(JBLK,2),1)=MALC(JBLK,1)
178 IF(MALC(JBLK,1).GT.0) MALC(MALC(JBLKl),2)=MALC(JBLK,2

C)
GC TO 45

22C IF(ICASE) 290,290,225
225 MAVL(M,3)=MALC(JBLK,3)

MAVL(M,5)=MAVL(M,5)+MALC(JBLK,5)
IFMAVL(M,2)) 232,232,227

227 IF(MAVL(MAVL(M,2),4)-JBLK) 232,230,232
23 0 MAVL(MAVL(M,2),4)=MALC(JBLKIl
232 GO TO 1751
290 IQ=1
295 IF(MAVL(IQ,5))300,320,300
330 [Q=IQ+1

IFIQ1-128) 295,295,305
305 WRITE(6,313)JBLK,JO8
31, FORMAT(47H MEMRLS FOUND NO EMPTIES IN MAVL WHEN RELEAS

CING ,17, 4HFROM,17)
C
GO TO 500



391

32C NENT=IQ
IF(MALC(JBLK,1) .GT.O) MALC(MALC(J8LK1 ),2)=MALC(JBLK,2

C)
IF(MALC(JBLK,2)) 325,325,330

325 MALCS=MALC(JBLKel)
GO TO 335

330 MALC(MALC(JBLK,2),1)=MALC(JBLK,1)
335 IF(MI) 364,364,362
362 MAVL(M1,1)=IQ

MAVL(IQ,2)=M1
GO TO 365

364 MAVL(IQ,2)=-1
MAVLS=IQ

365 IF(M.GT.O) MAVL(M,2)=IQ
MAVL(IQ,1)=M
MAVL(IO,3)=MALC(JBLK,3)
MAVL(IO,4)=MALC(JBLKt,)
MAVL(IQ,5)=MALC(JBLK,5)
K=MALC(JBLK,2)

38C IF(K) 44,44,385
385 IF(MALC(K,4)-M) 44,390,44
393 MALC(K,4)=IQ

K=MALC(K,2)
GC TO 380

5C0 RETURN
END



392

SUF OUTINE OVFL"G(KEY,JOB,IFLD,IVALNNT)
C OVFLMG HANDLES OVERFLOW FRCM VARIOUS FIELDS OF THE J-TABL
CF
C KEY = 1 INDICTFS kETRIEVE. THE FIRST IVAL(1) VALUES
C FURL Ji'S FIELU IFLD ARE SKIPPED AND RETRIEVAL BEGINS
C AFTER THIS AND CONTINUES FOR THE NEXT NNT VALUES OR UNTIL
C TH- VALUES UNDER IFLD ARE EXAUSTED WHICHEVER COMES FIRST
C KEY = ? INDICATES PLACE. THE FIRST NNT VALUES IN
C IV4L(1 THRU NNT) ARE PLACED IN JOB'S OVERFLOW AREA
C UNER IFLD.
C KEY = 3 INDICATES EMOVE. THE FIRST IVAL(1) VALUES
C U ):R JOB'S IFLD FIELD ARE SKIPPEC AND REMOVAL
C BEGI:, AFTER THIS AND CONTINUES FOR THE NEXT NNT
C VALU.: OR UNTIL THE VALUES UNDER IFLD ARE EXAUSTED
C WHICH V COMES FI rST.

CC MO'O/BLK7/J( 27,64)
CC- ', 9O;"N/LK/ JOVFL ( 32,32)
u I: NSION IVAL( 1)
I i CR*2 J,HFIX,JOVFL
;G TO (1,2 .'5 5 .',),KEY

C TO HE ;,= FOR RETRIEIAL OF N%4T VALUES
1. NJ St[P=IVAL(1)

IV'1L( 1)=
Ki =

JA L =J (24, JOB)
13 IF(JADD) 7,,7,7C
S NP" TB=

IP':T=1
25 IF!![:[=JOVFL(JADD,IPNT)

CALL UNMIKI(15,1 ,IFHD,LFLD)
IF(LFLlD-FLD) 3 ,4',3

3 i P T ==I PAT
CALL U'V IX( i ,5,IFHD, IPNT)
IF(I :)JT) 35,35,25

5 JAUD=JOVFL (JAI)D, )2)
C TO 15

4. CAL.L U IX(5 1, ,IFHD,1 ENTRY)
I=

-4: Ili+i
I F (I - 1NTPY) 5" ,5 ,3 -
IF ( KIIP) 6'.,6.,55

:C' Tr; 4

IF(K- .'T) 65,6 ,7

ORIGINAL PAGE IS
OF POOR QUALITY



393

C3 IVAL(K)=JOVFL(JAD , IPNT+I)
IF(K.GE.NT) GO TO 70
" c T C 5

7 =TURN
C TO -- FUR PLACING THE VALUES FPCr, IVAL(1 THRU 'INT)

K=i
L A T 3
JA .r=J( 24, JOCR)

S5 IF(JA O) 29V v,292.
21. IP'T=1
Ll i FH =JUVFL(JA 0, I P'T )

caLL UVMIX(15,1 ,IFHCLFL[ )

CALL U (IX(,,I5,5, IFHOD,NPNTF)
CALL U"'.IX(5,-, IFHD,NENTRY)
I (LFL'-IFLD) 215,35_,215

?i, IF(N)NTF) 225,225,22"

I P "-, ITF
STOl 212

I I (IN\T+ \',IE TRY +6-31) 235,23:,231
.L : T =J ACI)
jA:;'..=JfOVFL (JACI D, 32)
.2 1I! 2 ,

, T .!=I PNT

IP T=PN'T+NE TRY+3
I FUL L =JnfVF L ( J D F, P T )
C'LL P.CK( ,IFULL,IPNT,31)
J VFL(JA~ P t -i T TB)= I F ULL
JI FL(JA'O,IP'T)=IFL_ F .24

iF([I ST+1-PNTF) 6:;,T,.55,255
.,. IF(iLo" .TF-12) 22E,2: 3 ,22

I FL(JA3 ,IP'!T+I)=IVAL(K)
Ji. VF L ( J . , I P T ) = Jr F L (JAL D , I P"T ) + 1

.) J = JADD+1

IF(J '-32) 3,31 3
T1r ( ,, 5) K,N,''T,IFLU ,J.

F AT( ' VFLi' RA: CUL qF RPCr: WHiJ TRYT- T!) PLACCL

/, ' VALUF NC].',14,' Fim A TOTAL IOF',I14,, VA
L ' "',/, ' INTO FlcLE',14 '  FOR JOB ,I14

ORIGfNAL PAGE iSOF POO QUALI



394

31. IFfJOVFL(JAD 9,1)) 295,315,295
315 IF(.ASTB) 32:,32':,317
A17 JOVFL(LASTR,32) =JADD

Gf( rj 325
32 J(> -,JOB)=JADD

IFULL=J (22 ,JOB)
CALL PACK(,t IFULLIFLOIFLO)
J( I ,JrJOB)=IFULL

33 IP .'=1
ciP 'F= 3 2
;C rl: 2Z4

C FJUUD FIELD WITH "4AME IFLD
35. IF( ,DTF) 36',36',?55
3~3 IF(I2NT+NENTRY+-N'lNTF) 245,220,220
"6. IF(PNT+1ENTRY-31) 230,365,365

3'; P I f'F=3.
(. Tr, 245

3. IF!.L=J(2 ?2,JOb)
CALL PACK( ,IFULL,IFL , IFLD)
J( .1 , JO )=1FULL

C T.1 fK FOr,. FMOVAL. (IF THE FIRST NNT ENTRIES AFTER IVAL(1
C)
.. L, . rIS =

JAI4 =J( 24, JUO )
K=

IS I::'=IVAL(1)
S5 IF(1 V).) 51l,51 ,521

, I r-(6,515) KK, .IT,1IFL D,JO3
513 FP- 'T(' lVFLM CA FIND ONLY ,14, OF THE',[4,/,

V LUES FRCM FIELD',14,' OF JOb,',14)

V5 i J 1=J VfL.(JACO,IPr IT)
C LL CU'! "IX(15 1 ,IFHDLFL )

IF(LFLfI-IFLc) 53 ',54 ; 57)
.. \T i =I PNT

LLL U ( , 5, HID, I PNT) --IGINAL PAGE Is
iF( IT) 535,53, 25 OF PO QUALIT

5 LI- T =J A C(
J J 1V-JVFL(JAD0,32)

. J



395

5 4.., CALL UNV'IX(5CZt1FHDtNENTRY)
IF(ISKIP) 560,56.39545

545 IF(ISKIP-NENTRY) 555t55:9550
551 ISIKIP=ISKIP-NENTRY

GO TO 53"i
355 I=NlzNTPY-ISKIP

L=I+1
ISK I P=
GO TO 565

56' 1=
L~i

965 1=1+1
I F(I1-N TJR Y3 5 8 Co5 8,95 7 C

57-. IF(L-1) 5E19,5759531-
575 IT!E.P=IPNT

T,-)T 6C
~'~ J6VFL(JADCIPNT+I)..,

JfjVFL(JADU, 1PNT)=JOVFL(JAUU,IPNIT)-l
K=K41
IF(K-NNT) 565t565t585

58'5 IF(I-NFNTRY) 5909b57;,v571-.
.59- 1=1+1

I F ( I-"EN TRY) 59 5, 5 969 5
i5 J',VFL(JAD,IPNITL)=JOVFL(JADD,IPNTI

JflVF"L(JAUO),IPNT+I ="

L=L4-1
F0 T 0 5 9'

f, CALL UNMlX( b,,5,IFHLD,NPNTF)
IF(It"PNTF) 6G64,~

C TO W.-1- TO kESTACK RZE'441NX.PR OF RLnCK
I N~FF=NP;4TF-I PIJT
I [HL -JO VF L J A OD9NPN T F
LCA LL Url M I X5 :,IF HE;, NENTR Y
J('FL(JADOOPNTk=JOVFL(JADDNPNTF)
j 'f WL ( JAO) ,N PITF

61J =11
i F ( 1- 4E1T RY ) 6 2-, 6 2,6 2 5

C2., JO)VFL(JAOD,IPNT+L VJUIVFL(JADC,NPNTF+I)
J ("IFIL ( J ADU o N PA T F +
GO Td 6,i5

5 CPA-L UN(-iIX(-lC,5tIF-',r\PNTF)
I f 'JP TF) 631)6'35, 6

6' J jiVFL (JACP, I PNT )=JC VFL (JADO,1PN4T ) -IDIFF*32
IPWTNP'JTF-IL).IFF

C Tn;~



396

635 IPdT=ITEMP
IF(K-NNT) 530,523,695

65. IF ('PNTB) 660,660,655
655 IFULL=JOVFL(JADD NPNTB)

CALL PACKISIFULL,.',31)
JDVFL (JADD,NPNTb) =I FULL
IF(K-NNT) 535,535,695

C TH P:.-SENT BLOCK IS DESTROYED
66.; ITt'"P=JADD

IF('ASTB) 670,673,665
C RELINK AKOUND PRESFNT DESTROYED BLOCK
665 JF)VL ( LST, 32) =JOVFL (JADD, 32)

G00 ro 68V
67. IF(JUVFL(JADD,32)) 685,685,675
C RE),T JOB'S FIRST BLOCK POINTER IN J-TABLE
675 J ( 24,JOB)=JOVFL(JADD,32)
6F. J ;'j=J VFL ( JADD, 3 )

JOVFL( ITEP,32 )=
JOVFL(ITEMP, IPAT)='"
IFI( - NT) 5.5,5 5,695

C Jfo,'S IVERFLOW ARE\ IS DESTROYED
6.5 J( , JOB )=

J( ,JOB)=
J.VIEL (JADD, I PNT ) =

T""J* paGB U:

'C JALY



397

PCGRAN FOR SOLVING ACCESS CONFLICT EQUATION

IVE JSION R(15),P(15),A1225)
LrJUSLL PRECISION R,4,P,PI.VIT,TCP,BCT,X,Y,Z,ZZ,CMR
uOUBLE PRFCISION PZRC,PNU

1 READ(5,5) NSTEP
FMAT(15)
ICN T=

i ICNT=ICNT+
IF(ICNT-NSTEP) 20,2U,15

1 0;O T,; 2
2. ;'AD(5,51 N

WRITE(6,25) N
25 FO-CvAT(' THE NEXT SOLUTION IS FCR',13,' CONTENDING PRO

CCS')

L='. .:
Y=.25;' /N

26 L=Z+Y
IF(I,EQ.2.AND.Z.GT.1./N) GO TO 13
IF(Z.GT.3.1/N) GU TO 1;

=

3 K=K+1
IF(K.GE.N) GO TO 150
LU 2 =' I N. (N-1., K+1)
1=-1

37 1=1+1
IF(I.tT.LJU ) ;GO TO 1,J

IEI =M! X.,: (-K-,l K+1-1)+1
[L L= ~,I :(N-K-1,K+1- I
1 '1 ' ,

,4 IF(I IG. T.N-I) GU TF' 5.
IF(Tl':P.G; I..,_012) GO TC 5'

T J'T.;P*BIRI

;[ Ti 4-

IF(ILTL.LE..) GC r0 55
IFI;UT.;E. .:) 1E) I:;r IS 5

CT r=d.T ILTL
ILTL=ILTL-1
i;n r '



398

55 X=X'(TOP/BOT)
TOP=1.0D0

S If =1 0.
[F(IHIG.LE.N-[) GO TO 4C;
IF(ILTL.GE.2) GO TO 50
GO TO 70

7: X=(X*ZZ *(N-K-1))*Z* (K+1-I)

75 IF(I.T. ) GO TC b
PIVIT=X
DU 76 JJ=1,M

76 P(JJ)=-X
,C TkO 37

F, P(I)=P(I)+X
GO T-7 37

i.. C M :P(K)
I=

1.5 1=1+1
IF (I .CT.'- I) GC, TO 11)
P(1)=P( 1)/(1. 0 -CMR)
,C TO I'5

11. R(r ) =-P I V IT/( 1 .'Di-CVR )

I=

115 I=T+i
IF(I.;T.N-1) GC T1. 3"

7r TL) 115

,15 I 15

CALL S:3LV R(R , ,1,1,EPS,IER))
( TL(blb :) N,Z,IER

16 FC ,AT(I/ RETUDN FROM SOLVER N,Z,IER ARE',2X,13,2X,F.

. T , 1 1 7

17 fr: ';AT(/' THE SOLUTILC ARR4Y FOP N =',13,' AND = ',F

C5. ,' IS'/)
,,- T- ( t, 175) (RII),I=1, )

17 F " T ,4 2 X, ) 14 .i)

C _ . I=[,
. '=bI+FLL 4T(1 )/ FLOA T T(;)*R (I)

=1.-S)

: T r_(6, 185) NZ,SC, P "D
.5 F I A(/' FO ' = ',13,' AND 7 = ',F5.2,' SLOCY DCWN CU

, TO Ckn!TEANTIuON IS ',F7.5,'. FACH PRCCES

ts-. IS EXPECTh)-',/, TO PR';CCFD AT ',F7.5,' NORM

ORIGINAL PAGE IS
OF POOR QUALITY



399

CA~L SPEED.'/IM
*)0C.

cOU 19* I=1,M
1V PZQI=PZRO+R(I)

P ZLu= . D -PZRO
? IU (Z**N )*PZRO

wRIT;-:6,195) PNU
19'5 FrG'N;AT(' EXPECTED BAINOwICTH NONUTILIZATIONj=,D48

WC Tn 26
S ST P



400

SUBROUTINE SOLVER(RtAM,N,EPSIER)
DIMENSION A(1),R(1)
DOUBLE PRECISION RtAPIV,TBTOLPIVI
IF(M) 23,23,1

C SEARCH FOR GREATEST ELEMENT IN MATRIX A

1 IER=O
PIV=.C0D0

NM=N*M
00 3 L=1,MM
TB=DABS(A(L))
IF(TB-PIV) 3,3,2

2 PIV=TB
I=L

3 CLNTINUE
TOL=EPS*PIV

C A(I) IS PIVOT ELEMENT. PIV CONTAINS ABS VALUE OF A(I).
C START ELIMINATION LOOP

LST=1
D0 17 K=1,M

C TEST ON SINGULARITY
IF(PIV) 23,23,4

4 IF(IER) 7,5,7
5 IF(PIV-TOL) 6,6,7
6 IFR=K-1
7 PIVI=1.3D0/A(I)

J=(I-1)/M
I=I-J*M-K
J=J*1-K

C I+K IS ROW INDEX, J+K COLUMN-INDEX OF PIVOT ELEMENT
C PIVOT ROW REOUCTICN AND ROW INTERCHANGE IN RIGHT HANC SI
CDE R

00 8 L=KNMM
LL=L+I
TB=PIVI*R(LL)
R(ILL)=R(L)

8 R(L)=TB
C IS ELIMINATICN TERMINATED

IF(K-M) 9,18,18
C CULUMN INTERCHANGE IN MATRIX A
9 LEND=LST+M-K

IF(J) 12,12,13
1i: II=J*M

CO 11 L=LST,LEND
T8=A(L)



401

LL=L+I1
A(L)=A(LL)

11 A(LL)=TB
C ROW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A
12 00 13 L=LSTMMM

LL=L+I
TB=PIVI*A(LL)
A(LL)=A(L)

13 A(L)=TB
C SAVE COLUMN INTERCHANGE INFORMATION

A(LST)=J
C ELEMENT REDUCTION AND NEXT PIVOT SEARCH

PIV=.000DO
LST=LST+1
J=
CO 16 II=LSTLEND
PIVI=-A(II)
IST=II+M
J=J+1
CO 15 L=IST,MMM
LL=L-J
A(L)=A(L)+PIVI*A(LL)
TB=DABS(A(L))
IF(TB-PIV) 15,15,14

14 PIV=TB
I=L

15 CONTINUE
DO 16 L=KNM,M
LL=L+J

16 R(LL)=R(LL)+PIVI*R(L)
17 LST=LST+M
C' END OF ELIMINATICN LOOP
C BACK SUBSTITUTION AND BACK INTERCHANGE
18 IF(M-1) 23,22,19
19 IST=MM+M

LST=M+1
CO 21 I=2,M
II=LST-I
IST=IST-LST
L=IST-M
L=A(L)+.50D
00 21 J=II,NM,M
TB=R(J)
LL=J
CO 23 K=ISTMM,M
LL=LL+1



402

2C TB=TB-A(K)*R(LL)
K= J +L,
.R(J)=R(K)

21 RIK)=TB
22 RETURN
C ERROR RETURN
23 IER=-1

RETURN
ENU



403

PROGRAM FOR DETERMINING SLOW CCWN ANP

3BANWIDTH LTILIZATION UNDEP. LOCALIZED
RBANDWIDTH LIMITATION AN\C MIS'ATCH

fil"ENSION ISLOW(4'),IUTL(49),BW(16),IBWR(4 )

R.EAD(5, 1!) NRUNS,NSEED
S FIR AT(2(2X, I3))
WRIT-=(6,10) NRUNS,NSEED
I X=N S: ED
tr -= "

IF(JR.GT.NRUNSI GO TC 30
EAD(5,2) NPROS,NSAMPqW

N0RD=NPROS-1
.FL i-.T(2(2X,11'),7X,F5.3)

TRPTAL=(FLOAT(,PROS) *.5)*FLOAT(NPRD)

I=I+1
If I .GT.:IPr OS) GO T3 35
'w(I) ((I- 1)*W)/TOLTAL
.1C Tl 3.

'I _ 4 = .... :L

LS T , =
SSTD= ".

. i 37 I=1,4L

I ' (I)=
37 IUTL I)=

. x;S=:S+ 1
[f(: .LE.'ISA"P) Gn" T2 7.
!;,: , ; =!J,,i C I_ ' N/N S P vp

7 A 1,1 E A \ I/'\JS AM P, .; ' =-11? S T / N S P - k EA
S'>f. 3PT( UST/NSAMP-UrA/EA ~*2)

S c=SOR!T( SSTU/NS4AP-S EANI*0 E 2)
S T SrT 'TD/N S A,! P IA FAN ) S S.E
IT ( J,5) ,P rn, SA N A PW,,ANLST tSM AN, ST 4E

-T t-FlO., :T(/,' NP, kCS,.NS4 Pi. ,w,UCEA, STr.,SMEAN, iTD t
2(2X,I1 ),5(2X,F7.5))

ORIGINAL PAGE IS

OF POOR QUALITY



404

,WRITA6,46) RMEANtRSTD
46 FCRP.AT(' RMEAN AND IRSTC ArEI,2(2XF8.53)

WR[TE(6,5).) ISLCW

WR T=(& t.,&) I UTL
tWkiT,-(6,5:) IBWP
GC T') 15

715 1=1+

I F( I .GT NP .10S) rf O 1 C,7
CALL 5RA4DU( IXIYvkAN)

II- X = I FI XR (AlN\ R 0+ . 5)+1

Tr Tf) 73
I F (i'k .'IT .1 GO TO) 11

1. IIL( S=I F I YSLbN* 39. + . 5+1
Ii9'4J=IFlXftWU*?).4.5)+1

I SLW(,I NOXS) = ISLJW I NOXS )+1
lUrL( iI:.XLJ)=IuTL(I:N.JUXU)+l

UP,.' NU Y,,:ANL+tvqi

S ; r S T ' LP
N rf~



405

SjuP 0 UT I AE RA'JDU ( IXI YYF L
IY=IX*65539
IF(IY) 596,6

5 Y=[Y+2i47483647+1
( Y F L= I Y

YFt=YFL*.46566L3E-9

Ni



406

PPC ,RA.1I FOq DETEkMIP ING SERVICE FOR PRIOPITY

up91.I CONIFLICT RESOLUTION SCHEME

SI l.: SI NlJ IP(16), IACwI(16),NAEP(16)
LIv I SII ON DI FF(4 '),)I FP (4 C),DIFB (4:1)
INf rER CIFF,GIF- ,DIFG
,:' EA'(5, i"' ) NPUN: ,ISEFD
FC.- A.T(2( X,11 ))

IF(' -.GT.N UP.iS) tC TC 2.r
K.A: (5,1 NPRiStOS, TEPS

S'1 (6,2 -  NSTtF " S,J P R SISEE '
Fi,) AT(//,' THE N. XT ,15, STEPS IS FOR ',13,' PRECES

SI T F( , 22
F2fl-K' IT(' LRFL Li-? RATIO OF TP TC PL Ip(1 THRU NPRO

LA 5 I=1,4.
LIFF(1)=
LIF (I)=

-olGINAL PAGE 1i
,= .. OF POOR QUALITY

,

"S= 45+1
It:(, S..,T.NSTFUS) (,q T{. 15
,.. :3 [I, ''\PP.-1

C' LL k AA ') (I S EL , I Xt A )

'A '( )=
i'( I )=I FIX ( ,a'-,} )+ i

S J=I,' PR.



407

[F(IP(1).(E.IP(J)) GC TO '3
IT-M.P=IP( I)
IP( I )=IP(J)I P ( J ) =I T E pi
II(J)=IT=MP

4 CCJ TI NUE
iL.i 45 I= ,NPRq S

45 I1C L(1)=I (I)
I FL :; =
JJ=
IlIG=1
JJ=JJ+1
J=

'5 J=Jl
IF(J.GT.\P ?US) -0 Tl 6.
IF(1I1CrI(J).LE.I4CRI(IB G)) G T . 55
I l';=J

rC Tn 55

A7" ( T =.\I Z1 )( I BI )+I
i.- [ d C L( BI=.

6-.- I = 1, P R .S
SAc ( )=IACR 1 + I (1) I (1)
IF (It.I(;. E.NPOS) n TC 5
IF( IFL4G.E r.1) GC TO 67

Lp- = J J ORIGINAL PAGE 18
I FA. = 1 OF POOR QUALIT"A
JJ=
I, T., 5

LC I I=1, 4PRPIS

I :Ui=, ISUM 1 I P (NPROS)
v, IT (T t , L LLP, J J I 1.SU-, ( I P (I ) , I = P 'P OS)
F-AI T iAT( 19( X, IS)
: ,T T =F L-}AT ( AT A EP ( 1 ) IP ( ,P OS ) /FL AT( I P(1) '*NA 3 P PR.OS )

v If-, (6,~2) (NA tP(I) ,I=1 ,;NPROS)
oi .- , ( '  N' . ACCES ,Y' PROC',16(I, 15))

;IT (6, 8 3 ) BR4TE
FC;; l.:T('+',114X,F7 .4,)

>S T f.) = , c r + B A T E-' '2
r)ST! =F TD+3RATE**2
FF="L,. T(L LP-IPSUM) /FLCAT( IRRUM) +.5
IFI +FF-*2
f *- .,-=. F' :.A'.+FF

IF(T i cFX.(T. .:.D.INJDtr.L ') G) T) 95



408

I -; F=IRkNCF+1
GC T3 9.

5 4I F[ I EIX)=DIFF( INDEX ) +1
9:. FF=FLOAT(JJ-IRSUM )/FLOAT( ISUM)+.5

v=- 0+FF**2
PM: ,AN=PMEAN+FF
IPiXX=IFIX(FF*4 .,+.49)
I F(1:U E X .GT..A- ).INrFX.LE. 4'.) CO TO 95
I j ,,= I RNGP+ i

S lt IF (INDFX)=CIF I,(,IDEX)+1
1 .. I'l 'X=IF TX(BP AT--*2 ."+.G9O99 1

IF(I J.FX.3T...A .. IiP X.LF.4T) GO TO 1:5
19 ;B=IRNGG+I

l . Ir,(ICr'LX)=DIF (ILX)+1
,L1 T :J

.4 T / T S
F. w T ' fl(A, S I F /; SF, DIFF

St\ ,32 (T( ,2F(8X, ))

'.r-]T(. a ,() *Ipi , ; :'A' ,D ST>4Uri) LVITIFPI 0

, -i I -( O ,, 1 5 5 ) "'i. " )B , I F ,.

-. -412 J AJ/N, T L ,S

F T SO T AN P St. T - - ;, )

T Sl, T( ST-/ 'STE PS- P, i* 2)

O GINAL PAGP S T

I T l , , L A, F-ON oR.T. sUpAIT )/PL)
' F T 2', (2X,F .5))

, L7( ,17 ) "P-3S,4,P.TD

-7 F T(' F "',ME ,' 9W.., ... . T. .J (P(I)) P L
P .T A ' ,2(?X,F.8.5))

.7 , r( F ,I P, p US 'DA . ._ STL4DA , VIATI 0
-VICE TCHI " ST P I,.PITY',/,' J'? 3 RELATIVE TC LrAE

S T I , TY J:B Ak ', , (2K,F .5-))

O RGINAL PAGE 18
Op POOR QUALITy


